
System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

GROUP - C

EXPERIMENT NO : 12

1. Title:

Implement UNIX system calls like ps, fork, join, exec family, and wait for process management (use

shell script/ Java/ C programming)

2. Objectives :

- To understand UNIX system call

- To understand Concept of process management

- Implementation of some system call of OS

3. Problem Statement :

Implement UNIX system calls like ps, fork, join, exec family, and wait for process management (use

shell script/ Java/ C programming)

4. Outcomes:
After completion of this assignment students will be able to:

- Knowledge of System call
- Compare system call and system function
- Application of System call

5. Software Requirements:

GCC or JDK/Eclipse

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

SYSTEM CALL :

- When a program in user mode requires access to RAM or a hardware resource, it must ask the

kernel to provide access to that resource. This is done via something called a system call.

- When a program makes a system call, the mode is switched from user mode to kernel mode. This

is called a context switch.

- Then the kernel provides the resource which the program requested. After that, another context

switch happens which results in change of mode from kernel mode back to user mode.

Generally, system calls are made by the user level programs in the following situations:

 Creating, opening, closing and deleting files in the file system.

 Creating and managing new processes.

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

 Creating a connection in the network, sending and receiving packets.

 Requesting access to a hardware device, like a mouse or a printer.

- To understand system calls, first one needs to understand the difference between kernel

mode and user mode of a CPU. Every modern operating system supports these two modes.

Kernel Mode

 When CPU is in kernel mode, the code being executed can access any memory address and any

hardware resource.

 Hence kernel mode is a very privileged and powerful mode.

 If a program crashes in kernel mode, the entire system will be halted.

User Mode

 When CPU is in user mode, the programs don't have direct access to memory and hardware

resources.

 In user mode, if any program crashes, only that particular program is halted.

 That means the system will be in a safe state even if a program in user mode crashes.

 Hence, most programs in an OS run in user mode.

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

Examples of Windows and Unix System Calls –

WINDOWS UNIX

Process Control

CreateProcess()

ExitProcess()

WaitForSingleObject()

fork()

exit()

wait()

File Manipulation

CreateFile(),

ReadFile()

WriteFile()

CloseHandle()

open()

read()

write()

close()

Device Manipulation

SetConsoleMode()

ReadConsole()

WriteConsole()

ioctl()

read()

write()

Information

Maintenance

GetCurrentProcessID()

SetTimer()

Sleeo()

getpid()

alarm()

sleep()

Communication

CreatePipe()

CreateFileMapping()

MapViewOfFile()

pipe()

shmget()

mmap()

Protection

SetFileSecurity()

InitlializeSecurityDescriptor()

SetSecurityDescriptorGroup()

chmod()

umask()

 chown()

System Call Basics

 Since system calls are functions, we need to include the proper header files

o E.g., for getpid() we need

 #include <sys/types.h>

 #include <unistd.h>

 Most system calls have a meaningful return value

o Usually, -1 or a negative value indicates an error

o A specific error code is place in a global variable called

 errno

o To access errno you must declare it:

 extern int errno;

UNIX Processes

 Recall a process is a program in execution

 Processes create other processes with the fork() system call

 fork() creates an identical copy of the parent process

 We say the parent has cloned itself to create a child

 We can tell the two process apart use the return value of fork()

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

o In parent: fork() returns the PID of the new child

o In child: fork() returns 0

 fork() may seem strange at first, that's because it is a bit strange!

 Draw picture

main() {

 int id;

 id = fork();

 if (id == 0) {

 /* in child */

 } else {

 /* in parent */

 }

}

Starting New Programs

 fork() only allows us to create a new process that is a duplicate of the parent

 The exec() system call is used to start a new program

 exec() replaces the memory image of the calling processes with the image of the new program

 We use fork() and exec() together to start a new program

main() {

 int id;

 id = fork();

 if (id == 0) {

 /* in child */

 exec("/bin/ls");

 } else {

 /* in parent */

 wait();

 }

}

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

Syscalls for Processes

 pid_t fork(void)

o Create a new child process, which is a copy of the current process

o Parent return value is the PID of the child proces

o Child return value is 0

 int execl(char *name, char *arg0, ..., (char *) 0)

o Change program image of current process

o Reset stack and free memory

o Start at main()

o Also see other versions: execlp(), execv(), etc.

 pid_t wait(int *status)

o Wait for a child process (any child) to complete

o Also see waitpid() to wait for a specific process

 void exit(int status)

o Terminate the calling process

o Can also achieve with a return from main()

 int kill(pid_t pid, int sig)

o Send a signal to a process

o Send SIGKILL to force termination

 UNIX SYSTEM CALLS :-

 Ps command :

The ps (i.e., process status) command is used to provide information about the currently

running processes, including their process identification numbers (PIDs).

A process, also referred to as a task, is an executing (i.e., running) instance of a program. Every

process is assigned a unique PID by the system.

The basic syntax of ps is

ps [options]

When ps is used without any options, it sends to standard output, which is the display monitor by

default, four items of information for at least two processes currently on the system: the shell and ps.

http://www.linfo.org/command.html
http://www.linfo.org/process.html
http://www.linfo.org/standard_output.html
http://www.linfo.org/shell.html

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

A shell is a program that provides the traditional, text-only user interface in Unix-like operating

systems for issuing commands and interacting with the system, and it is bash by default on Linux. ps

itself is a process and it dies (i.e., is terminated) as soon as its output is displayed.

The four items are labeled PID, TTY, TIME and CMD. TIME is the amount of CPU (central

processing unit) time in minutes and seconds that the process has been running. CMD is the name of

the command that launched the process.

 Fork()

 The fork() system call is used to create processes. When a process (a program in execution) makes

a fork() call, an exact copy of the process is created. Now there are two processes, one being

the parent process and the other being the child process.

 The process which called the fork() call is the parent process and the process which is created newly

is called the child process. The child process will be exactly the same as the parent. Note that the

process state of the parent i.e., the address space, variables, open files etc. is copied into the child

process. This means that the parent and child processes have identical but physically different

address spaces. The change of values in parent process doesn't affect the child and vice versa is true

too.

 Both processes start execution from the next line of code i.e., the line after the fork() call. Let's look

at an example:

 //example.c

 #include <stdio.h>

 void main() {

 int val;

 val = fork(); // line A

 printf("%d",val); // line B

 }

 When the above example code is executed, when line A is executed, a child process is created. Now

both processes start execution from line B. To differentiate between the child process and the parent

process, we need to look at the value returned by the fork() call.

 The difference is that, in the parent process, fork() returns a value which represents the process

ID of the child process. But in the child process, fork() returns the value 0.

 This means that according to the above program, the output of parent process will be the process

IDof the child process and the output of the child process will be 0.

http://www.linfo.org/unix-like.html
http://www.linfo.org/operating_systems_list.html
http://www.linfo.org/operating_systems_list.html
http://www.linfo.org/linuxdef.html

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

 Join Command :

The join command in UNIX is a command line utility for joining lines of two files on a common

field. It can be used to join two files by selecting fields within the line and joining the files on them.

The result is written to standard output.

Join syntax :

Join [option]….. file1 file2

How to join two files

To join two files using the join command files must have identical join fields. The default join field

is the first field delimited by blanks. For the following example there are two

files college.txt and city.txt.s

cat college.txt

1 pvg

2 met

3 mit

cat city.txt

1 nashik

2 nashik

3 pune

These files share a join field as the first field and can be joined.

join college city.txt

1 pvg nashik

2 met nashik

3 mit pune

 Exec()

 The exec() system call is also used to create processes. But there is one big difference

between fork() and exec() calls. The fork() call creates a new process while preserving the parent

process. But, an exec() call replaces the address space, text segment, data segment etc. of the current

process with the new process.

 It means, after an exec() call, only the new process exists. The process which made the system call,

wouldn't exist.

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

 There are many flavors of exec() in UNIX, one being exec1() which is shown below as an example:

 //example2.c

 #include

 void main() {

 execl("/bin/ls", "ls", 0); // line A

 printf("This text won't be printed unless an error occurs in exec().");

 }

 As shown above, the first parameter to the execl() function is the address of the program which

needs to be executed, in this case, the address of the ls utility in UNIX. Then it is followed by the

name of the program which is ls in this case and followed by optional arguments. Then the list

should be terminated by a NULL pointer (0).

 When the above example is executed, at line A, the ls program is called and executed and the current

process is halted. Hence the printf() function is never called since the process has already been

halted. The only exception to this is that, if the execl() function causes an error, then

the printf()function is executed.

 Wait ()

A call to wait() blocks the calling process until one of its child processes exits or a signal is

received. After child process terminates, parent continues its execution after wait system call

instruction.

Child process may terminate due to any of these:

- It calls exit();

- It returns (an int) from main

- It receives a signal (from the OS or another process) whose default action is to

terminate.

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t * infop , int options);

System Calls vs Library Functions

 A system call is executed in the kernel

o p = getpid();

 A library function is executed in user space

o n = strlen(s);

 Some library calls are implemented with system calls

o printf() really calls the write() system call

 Programs use both system calls and library functions

8. Algorithms :

Note : you should write algorithm as per your program

9. Conclusion :

Thus , the process system call program is implemented and studied various system call.

References :

https://en.wikipedia.org/wiki/System_call

https://en.wikipedia.org/wiki/Process_management_(computing)

https://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture25.pdf

https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/14/lec.html

https://www.thegeekstuff.com/2012/03/c-process-control-functions/

A P C/W TOTAL SIGN

(3) (4) (3) (10)

A – Attendance, P – Performance , C/W – Completion & Writing

https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Process_management_(computing)
https://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture25.pdf
https://www.usna.edu/Users/cs/aviv/classes/ic221/s16/lec/14/lec.html
https://www.thegeekstuff.com/2012/03/c-process-control-functions/

System Programming & OS Laboratory Third Year Computer Engineering
``

Pune Vidyarthi Griha’s COLLEGE OF ENGINEERING, NASHIK – 4 prepared by: prof. Gharu A. N.

Oral Questions: [Write short answer]

1. What is system call.

2. What is process management.

3. State various system call with e.g.

4. Compare system call & system function.

5. Define user mode & kernel mode.

6. What is kernel and shell.

