
Sub- PPL Unit-I
Class-SE Comp

A] SOFTWARE DEVELOPMENT PROCESS:

1. From the inception of an idea for a software system, until it is implemented and

delivered to a customer, and even after that, the software undergoes gradual

development and evolution.

2. The software is said to have a life cycle composed of several phases. Each of

these phases results in the development of either a part of the system or

something associated with the system, such as a fragment of specification, a test

plan or a user’s manual.

3. In the traditional waterfall model of the software life cycle, the development

process is a sequential combination of phases, each having well-identified

starting and ending points, with clearly identifiable deliverables to the next

phase.

4. Each step may identify deficiencies in the previous one, which then must be

repeated.

5. A sample software development process based on the waterfall model may

be comprised of the following phases:

6. Requirement analysis and specification: - The purpose of this phase is to

identify and document the exact requirements for the system. These

requirements are developed jointly by users and software developers. The

success of a system is measured by how well the software mirrors these stated

requirements, how well the requirements mirror the users' perceived needs, and

how well the users' perceived needs reflect the real needs. The result of this

phase is a requirements document stating what the system should do, along with

users' manuals, feasibility and cost studies, performance requirements, and so

on. The requirements document does not specify how the system is going to

meet its requirements.

1
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

7. Software design and specification: - Starting with the requirements document,

software designers design the software system. The result of this phase is a

system design specification document identifying all of the modules comprising

the system and their interfaces. Separating requirements analysis from design is

an instance of a fundamental“what/how” dichotomy that we encounter quite

often in computer science. The general principle involves making a clear

distinction between what the problem is and how to solve the problem. In this

case, the requirements phase attempts to specify what the problem is. There are

usually many ways that the requirements can be met. The purpose of the design

phase is to specify a particular software architecture that will meet the stated

requirements. The design method followed in this step can have a great impact

on the quality of the resulting application; in particular, its understandability

and modifiability. It can also affect the choice of the programming language to

be used in system implementation.

8. Implementation (coding):- The system is implemented to meet the design

specified in the previous phase. The design specification, in this case, states the

“what”; the goal of the implementation step is to choose how, among the many

possible ways, the system shall be coded to meet the design specification. The

result is a fully implemented and documented system.

9. Verification and validation: - This phase assesses the quality of the

implemented system, which is then delivered to the user. Note that this phase

should not be concentrated at the end of the implementation step, but should

occur in every phase of software development to check that intermediate

deliverables of the process satisfy their objectives. For example, one should

check that the design specification document is consistent with the requirements

2
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

which, in turn, should match the user's needs. These checks are accomplished

by answering the following two questions:

“Are we building the product right?”

“Are we building the right product?”

Two specific kinds of assessment performed during implementation are module

testing and integration testing. Module testing is done by each programmer on

the module he or she is working on to ensure that it meets its interface

specifications. Integration testing is done on a partial aggregation of modules; it

is basically aimed at uncovering intermodule inconsistencies.

10.Maintenance: - Following delivery of the system, changes to the system may

become necessary either because of detected malfunctions, or a desire to add

new capabilities or to improve old ones, or changes that occurred in operational

environment (e.g., the operating system of the target machine). These changes

are referred to as maintenance.The importance of this phase can be seen in the

fact that maintenance costs are typicallyat least as large as those of all the other

steps combined.

Programming languages are used only in some phases of the developmentprocess.

They are obviously used in the implementation phase, when algorithmsand data

structures are defined and coded for the modules that form theentire application.

B] LANGUAGE AND SOFTWARE DEVELOPMENT ENVIRONMENTS:

1. The work in any of the phases of software development may be supported by

computer-aided tools. The phase currently supported best is the coding

phase, with such tools as text editors, compilers, linkers, and libraries.
2. These tools have evolved gradually, as the need for automation has been

recognized. Nowadays, one can normally use an interactive editor to create a

program and the file system to store it for future use. When needed, several

3
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

previously created and (possibly) compiled programs may be linked to

produce an executableprogram. A debugger is commonly used to locate

faults in a program and eliminate them.
3. These computer-aided program development tools have increased

programming productivity by reducing the chances of errors. Yet, as we have

seen, software development involves much more than programming.
4. In order to increase the productivity of software development, computer

support is needed for all of its phases. By a software development

environment we mean an integrated set of tools and techniques that aids in

the development of software.
5. The environment is used in all phases of software development:

requirements, design, implementation, verification and validation, and

maintenance.
6. An idealized scenario for the use of such an environment would be the

following. A team of application and computer specialists interacting with

the environment develops the system requirements.
7. The environment keeps track of the requirements as they are being

developed and updated, and guards against incompleteness or inconsistency.
8. It also provides facilities to validate requirements against the customer’s

expectations, for example by providing ways to simulate or animate them.

The environment ensures the currency of the documentation as changes are

being made to the requirements.
9. Following the completion of the requirements, system designers, interacting

with the environment, develop an initial system design and gradually refine

it, that is, they specify the needed modules and the module interfaces.
10.Test data may also be produced at this stage. The implementers then

undertake to implement the system based on the design.

4
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

11.The environment provides support for these phases by automating some

development steps, by suggesting reuse of existing design and

implementation components taken from a library, by recording the

relationships among all of the artifacts, so that one can trace the effect of a

change in–say–the requirements document to changes in the design

document and in the code.
12.The tools provided by the software development environment to support

implementation are the most familiar. They include programming language

processors, such as editors, compilers, simulators, interpreters, linkers,

debuggers, and others.
13.For this ideal scenario to work, all of the tools must be compatible and

integrated with tools used in the other phases. For example, the

programming language must be compatible with the design methods

supported by the environment at the design stage and with the design

notations used to document designs.
14.As other examples, the editor used to enter programs might be sensitive to

the syntax of the language, so that syntax errors can be caught before they

are even entered rather than later at compile time. A facility for test data

generation might also be available for programs written in the language.

C] LANGUAGE AND SOFTWARE DESIGN METHODS:
1. The relationship between software design methods and programming

languages is an important one. Some languages provide better support for

some design methods than others.
2. Older languages, such as FORTRAN, were not designed to support specific

design methods. For example, the absence of suitable high-level control

structures in early FORTRAN makes it difficult to systematically design

algorithms in a top-down fashion.

5
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

3. Conversely, Pascal was designed with the explicit goal of supporting top

down program development and structured programming.
4. In both languages, the lack of constructs to define modules other than

routines makes it difficult to decompose a software system into abstract data

types.
5. To understand the relationship between a programming language and a

design method, it is important to realize that programming languages may

enforce a certain programing style, often called a programming paradigm.
6. For example, as we will see, Smalltalk and Eiffel are object-oriented

languages. They enforce the development of programs based on object

classes as the unit of modularization. Similarly, FORTRAN and Pascal, as

originally defined, are procedural languages. They enforce the development

of programs based on routines as the unit of modularization.
7. Languages enforcing a specific programming paradigm can be called

paradigm-oriented. In general, there need not be a one-to-one relationship

between paradigms and programming languages. Some languages, in fact,

are paradigm-neutral and support different paradigms.
8. Design methods, in turn, guide software designers in a system’s

decomposition into logical components which, eventually, must be coded in

a language. Different design methods have been proposed to guide software

designers.
9. For example, a procedural design method guides designers in decomposing a

system into modules that realize abstract operations that may be activated by

other procedural modules.
10.An object-oriented method guides in decomposing a system into classes of

objects. If the design method and the language paradigm are the same, or the

language is paradigm-neutral, then the design abstractions can be directly

mapped into program components.

6
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

11.Otherwise, if the two clash, the programming effort increases. As an

example, an object-oriented design method followed by implementation in

FORTRAN increases the programming effort.
12.In general, we can state that the design method and the paradigm supported

by the language should be the same. If this is the case, there is a continuum

between design and implementation. Most modern high-level programming

languages, in fact, can even be used as design notations.
13.For example, a language like Ada or Eiffel can be used to document a

system’s decomposition into modules even at the stage where the

implementation details internal to the module are still to be defined.

D] LANGUAGES AND COMPUTER ARCHITECTURE:

1. Design methods influence programming languages in the sense of

establishing requirements for the language to meet in order to better support

software development.
2. Computer architecture has exerted influence from the opposite direction in

the sense of restraining language designs to what can be implemented

efficiently on current machines.
3. Accordingly, languages have been constrained by the ideas of Von

Neumann, because most current computers are similar to theoriginal Von

Neumann architecture (Figure 1).

7
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

4. The Von Neumann architecture, sketched in Figure 1, is based on the idea of

a memory that contains data and instructions, a CPU, and an I/O unit.
5. The CPU is responsible for taking instructions out of memory, one at a time.

Machine instructions are very low-level. They require the data to be taken

out of memory, manipulated via arithmetic or logic operations in the CPU,

and the results copied back to some memory cells.
6. Thus, as an instruction is executed, the state of the machine changes.

Conventional programming languages can be viewed as abstractions of an

underlying Von Neumann architecture. For this reason, they are called Von

Neumann languages. An abstraction of a phenomenon is a model which

Ignores irrelevant details and highlights the relevant aspects.
7. Conventional programming languages keep their computation model from

the underlying Von Neumann architecture, but abstract away from the details

of the indivual steps of execution.
8. Such a model consists of a sequential step-by-step execution of instructions

which change the state of a computation by modifying a repository of

values. Sequential step-by-step execution of language instructions reflects

the sequential fetch and execution of machine instructions performed by

hardware.
9. Also, the variables of conventional programming languages, which can be

modified by assignment statements, reflect the behavior of the memory cells

of the computer architecture. Conventional languages based on the Von

Neumann computation model are often called imperative languages.
10.Other common terms are state-based languages, or statement-based

languages, or simply Von Neumann languages. The historical developments

of imperative languages have gone through increasingly higher levels of

abstractions.

8
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

11.Many kinds of abstractions were later invented by language designers, such

as procedures and functions, data types, exception handlers, classes,

concurrencyFeatures, etc.
12.As suggested by Figure 2, language developers tried to make the level of

programming languages higher, to make languages easier to use by humans,

but still based the concepts of the language on those of the underlying Von

Neumann architecture.

13.Some programming languages, namely, functional and logic languages have
abandoned the Von Neumann computation model.

14.Both paradigms are basedon mathematical foundations rather than on the

technology of the underlyinghardware: the theory of recursive functions and

mathematical logic, respectively.
15.The conceptual integrity of these languages, however, is in conflictwith the

goal of an efficient implementation. This is not unexpected, sinceconcerns of

the underlying architecture did not permeate the design of suchlanguages in

9
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

the first place. To improve efficiency, some imperative featureshave been

introduced in most existing unconventional languages.

E] PROGRAMMING LANGUAGE QUALITIES:

1. In order to understand that, we should keep in mind that a programming

languageis a tool for the development of software. Thus, ultimately, the quality

of the language must be related to the quality of the software.
 Software must be reliable. Users should be able to rely on the software, i.e.,

the chance of failures due to faults in the program should be low. As far as

possible, the system should be fault-tolerant; i.e., it should continue to

provide support to the user even in the presence of infrequent or undesirable

events such as hardware or software failures. The reliability requirement has

gained importance as software has been called upon to accomplish

increasingly complicated and often critical tasks.
 Software must be maintainable.Again, as software costs have risen and

increasingly complex software systems have been developed, economic

considerations have reduced the possibility of throwing away existing

software and developing similar applications from scratch. Existing software

10
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

must be modified to meet new requirements. Also, because it is almost

impossible to get the real requirements right in the first place, for such

complex systems one can only hope to gradually evolve a system into the

desired one.
 Software must execute efficiently.Efficiency has always been a goal of any

Software system. This goal affects both the programming language (features

that can be efficiently implemented on present-dayarchitectures) and the

choice of algorithms to be used. Althoughthe cost of hardware continues to

drop as its performancecontinues to increase (in terms of both speed and

space), the needfor efficient execution remains because computers are being

appliedin increasingly more demanding applications.

F] LANGUAGES AND RELIABILITY:

1. The reliability goal is promoted by several programming language qualities. A

non-exhaustive list is provided hereafter. Most of them, unfortunately, are based

on subjective evaluation, and are difficult to state in a precise–let alone,

quantitative–way. In addition, they are not independent concepts: in some cases

they are overlapping, in others they are conflicting.
 Writability. It refers to the possibility of expressing a program in a way that

is natural for the problem. The programmer should not be distracted by

details and tricks of the language from the more important activity of

problem solving. Even though it is a subjective criterion, we can agree that

higher-level languages are more writable than lower-level languages (e.g.,

assembly or machine languages). For example, an assembly language

programmer is often distracted by the addressing mechanisms needed to

access certain data, such as the positioning of index registers, and so on. The

11
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

easier it is to concentrate on the problem-solving activity, the less error

prone is program writing and the higher is productivity.
 Readability. It should be possible to follow the logic of the program and to

discover the presence of errors by examining the program. Readability is

also a subjective criterion that depends a great deal on matters of taste and

style. The provision of specific constructs to define new operations (via

routines) and new data types, which keep the definition of such concepts

separate from the rest of the program that may use them, greatly enhance

readability.
 Simplicity. A simple language is easy to master and allows algorithms to be

expressed easily, in a way that makes the programmer self-confident.

Simplicity can obviously conflict with power of the language. For example,

Pascal is simpler, but less powerful thanC++.

 Safety. The language should not provide features that make it possible to

write harmful programs. For example, a language that does not provide goto

statements nor pointer variables eliminates two well-known sources of

danger in a program. Such features may cause subtle errors that are difficult

to track during program development, and may manifest themselves

unexpectedly in the delivered software. Again, features that decrease the

dangers may also reduce power and flexibility.

 Robustness. The language supports robustness whenever it provides the

ability to deal with undesired events (arithmetic overflows, invalid input,

and so on). That is, such events can be trapped and a suitable response can

be programmed to respond to their occurrence. In this way, the behavior of

the system becomes predictable even in anomalous situations.

G] LANGUAGES AND MAINTAINABILITY:

12
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

1. Programming languages should allow programs to be easily modifiable.

Readability and simplicity are obviously important in this context too. Two

main features that languages can provide to support modification are factoring

and locality.
 Factoring. This means that the language should allow programmers to factor

related features into one single point. As a very simple example, if an

identical operation is repeated in several points of the program, it should be

possible to factor it in a routine and replace it by a routine call. In doing so,

the program becomes more readable (especially if we give a meaningful

name to subprograms) and more easily modifiable (a change to the fragment

is localized to the routine's body). As another example, several programming

languages allow constants to be given symbolic names. Choosing an

appropriate name for a constant promotes readability of the program (e.g.,

we may use pi instead of 3.14). Moreover, a futureneed to change the value

would necessitate a change only in the definition of the constant, rather than

in every use of the constant.
 Locality. This means that the effect of a language feature is restricted to a

small, local portion of the entire program. Otherwise, if it extends to most of

the program, the task of making the change can be exceedingly complex. For

example, in abstract data type programming, the change to a data structure

defined inside a class is guaranteed not affect the rest of the program as long

as the operationsthat manipulate the data structure are invoked in the

sameway. Factoring and locality are strongly related concepts. In fact,

factoring promotes locality, in that changes may apply only to the factored

portion. Consider for example the case in which we wish to change the

13
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

number of digits used to represent pi in order to improve accuracy of a

geometrical computation.

H] LANGUAGES AND EFFICIENCY:

1. The need for efficiency has guided language design from the beginning.

Many languages have had efficiency as a main design goal, either implicitly

or explicitly.
2. For example, FORTRAN originally was designed for a specific machine (the

IBM 704). Many of FORTRAN's restrictions, such as the number of array

dimensions or the form of expressions used as array indices, were based

directly on what could be implemented efficiently on the IBM 704.
3. The issue of efficiency has changed considerably, however. Efficiency is no

longer measured only by the execution speed and space. The effort required

producing a program or system initially and the effort required in

maintenance can also be viewed as components of the efficiency measure.
4. In other words, in some cases one may be more concerned with productivity

of the software development process than the performance of the resulting

products. Moreover, productivity concerns can span over several

developments than just one.
5. That is, one might be interested in developing software components that

might be reusable in future similar applications. Or one might be interested

in developing portable software (i.e., software that can be moved to different

machines) to make it quickly available to different users, even if an ad hoc

optimized version for each machine would be faster. Efficiency is often a

combined quality of both the language and its implementation.
6. The language adversely affects efficiency if it disallows certain

optimizations to be applied by the compiler. The implementation adversely

14
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

affects efficiency if it does not take all opportunities into account in order to

save space and improve speed.
7. For example, we will see that in general a statement likeas different

example, the language can affect efficiency by allowing multithreaded

concurrent computations. An implementation adversely affects efficiency if–

say–it does not reuse memory space after it is released by the program.
8. Finally, a language that allows visibility of the underlying size of memory or

access to–say–the way floating-point numbers are stored would impede

portability, and thus saving in the effort of moving software to different

platforms.

I] A BRIEF HISTORICAL PERSPECTIVE AND EARLY HIGH

LEVEL LANGUAGES:

1. The software development process originally consisted only of the

implementation phase. In the early days of computing, the computer was

used mainly in scientific applications.
2. An application was programmed by one person. The problem to be

solved (e.g., a differential equation) was well-understood. As a result,

there was not much need for requirements analysis or design

specification or even maintenance.
3. A programming language, therefore, only needed to support one

programmer, who was programming what would be by today's standards

an extremely simple application.
4. The desire to apply the computer in more and more applications led to its

being used in increasingly less understood and more sophisticated

environments. This, in turn, led to the need for “teams” of programmers

and more disciplined approaches.

15
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

5. The requirements and design phases, which up to then essentially were

performed in one programmer's head, now required a team, with the

results being communicated toother people.
6. Because so much effort and money was being spent on the development

of systems, old systems could not simply be thrown away when a new

system was needed. Economic considerations forced people to enhance

an existing system to meet the newly recognized needs.
7. Also, program maintenance now became an important issue. System

reliability is another issue that has gained importance gradually, because

of two major factors.
8. One factor is that systems are being developed for users with little or no

computer background; these users are not as tolerant of system failures as

the system developers.
9. The second factor is that systems are now being applied in critical areas

such as chemical or nuclear plants and patient monitoring, where system

failures can be disastrous. In order to ensure reliability, verification and

validation became vital.
10.The first attempts towards definition of high-level languages date back to

the 1950s. Language design was viewed as a challenging compromise

betweenthe users' needs for expressiveness and the machine's limited

power. However, hardware was very expensive and execution efficiency

concerns were the dominant design constraint.
11.The most important products of this historical phase were FORTRAN,

ALGOL 60, and COBOL. FORTRAN and ALGOL 60 were defined as

tools for solving numerical scientific problems, that is, problems

involving complex computations on relatively few and simple data.

16
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

12.COBOL was defined asa tool for solving business data-processing

problems, that is, problemsinvolving simple computations on large

amounts of data (e.g., a payroll application).
13.These languages are among the major achievements in the whole history

ofcomputer science, because they were able to prove that the idea of a

higher-levellanguage was technically sound and economically viable.
14.Besides that,each of these languages has brought up a number of

important concepts. Forexample, FORTRAN introduced modularity via

separately developed andcompiled subprograms and possible sharing of

data among modules via a global(COMMON) environment.
15.ALGOL 60 introduced the notion of blockstructure and recursive

procedures. COBOL introduced files and data descriptions,and a very

preliminary notion of programming in quasi-natural language.
16.An even more convincing proof of the validity of these languages is

that,apart from ALGOL 60 which did not survive but spawned into their

languages,they are still among the most widely used languages in

practice.

J] A BIRD'S EYE VIEW OF PROGRAMMING LANGUAGE

CONCEPTS:

Using a simple C/C++program as an example, we look at the kinds of facilities that

a programminglanguage must support and the different ways that languages go

about providingthese facilities.

A simple program:

1. We are interested in the kinds of things one can do with

programminglanguages, rather than the specifics of a given program. What are

17
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

theinherent capabilities and shortcomings of different programming languages?

What makes one language fundamentally different from another and whatmakes

one language similar to another, despite apparent differences?
2. Below Example We have divided the program into three parts, separated from

each other by single blank lines.
3. The first section consists of two “#include” statements; the second part consists

of three “declaration” statements; and, finally, the third part is the actual code of

a function called main that supposedly “does the work”.
4. We can say that the first part is used to organize the structure of the program, in

this case in terms of the various files that constitute the program.
5. The second part defines the environment in which the program will work by

declaring some entities that will be used by the program in this file. These

declarations may import entities defined in other files.
6. For example, the line extern phone_list pb; indicates that the variable pb of type

phone_list is being used in this program but has been created elsewhere. The

third part deals with the actual computation.
7. This is the part we most often associate with a program. It contains the

program’s data and algorithms. Some of the data and processing in this part

may use the entities defined in the environment established in the second part.
8. For example, in Figure 4 the routines insert and lookup are used in the main

program. Another example is the output statement: cout << “Enter 1 to insert, 2

to lookup: \n”; which uses cout, the standard output device defined in the

standard input-output library iostream.h included in the first line of the

program.
9. Even in this short, simple program, we see that a programming language

providesmany different kinds of facilities.

18
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

10.\

K] SYNTAX AND SEMANTICS:
1. Any programming language specifies a set of rules for the form of valid

programs in that language.
2. For example, in the program of Figure 4, we see that many lines are

terminated by a semicolon. We see that there are some special characters

used, such as { and }.
3. We see that every if is followed by a parenthesized expression. The

syntax rules of the language state how to form expressions, statements,

and programs that look right.

19
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

4. The semantic rules of the language tell us how to build meaningful

expressions, statements, and programs. For example, they might tell us

that before using the variable request in the if-statement, we must declare

that variable.
5. They also tell us that, the declaration of a variable such as request causes

storage to be reserved for the variable. On the other hand, the presence of

the extern in the declaration of the variable pb indicates that the storage is

reserved by some other module and not this one.
6. Characters are the ultimate syntactic building blocks. Every program is

Formed by placing characters together in some well-defined order. The

syntacticrules for orming programs are rather straightforward. The

semantic building blocks and rules, on the other hand, are more intricate.

Indeed, most of the deep differences among the various programming

languages stem from their different semantic underpinnings.

L] LANGUAGE DEFINITION:

1. When you read a program, how do you know if it is well formed? How do
you know what it means? How does a compiler know how to translate the
program? Any programming language must be defined in enough detail

toenable these kinds of issues to be resolved.
2. More specifically, a language definitionshould enable a person or a computer

program to determine (1)whether a purported program is in fact valid, and (2) if

the program is valid,what its meaning or effect is. In general, two aspects of a

language-programmingor natural language-must be defined: syntax and

semantics.

M] SYNTAX:

20
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

1. Syntax is described by a set of rules that define the form of a language:

theydefine how sentences may be formed as sequences of basic

constituentscalled words.
2. Using these rules we can tell whether a sentence is legal or not.The syntax does

not tell us anything about the content (or meaning) of thesentence–the semantic

rules tell us that.
3. As an example, C keywords (such aswhile, do, if, else...), identifiers, numbers,

operators ... are words of the language.The C syntax tells us how to combine

such words to construct well-formedstatements and programs.
4. Words are not elementary. They are constructed out of characters belongingto

an alphabet. Thus the syntax of a language is defined by two sets of

rules:lexical rules and syntactic rules.
5. Lexical rules specify the set of charactersthat constitute the alphabet of the

language and the way such characters canbe combined to form valid words.For

example, Pascal considers lowercase and uppercase characters to be

identical,but C and Ada consider them to be distinct. Thus, according to the

lexicalrules, “Memory” and “memory” refer to the same variable in Pascal,

butto distinct variables in C and Ada.
6. The lexical rules also tell us that <> (or ¦) isa valid operator in Pascal but not in

C, where the same operator is representedby! =. Ada differs from both, since

“not equal” is represented as /=; delimiter<> (called “box”) stands for an

undefined range of an array index.
7. The distinction between syntactic and lexical rules is somewhat arbitrary.They

both contribute to the “external” appearance of the language. Often, wewill use

the terms “syntax” and “syntactic rules” in a wider sense thatincludes lexical

components as well.
8. How does one define the syntax of a language? Because there are an

infinitenumber of legal and illegal programs in any useful language, we clearly

21
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

cannotenumerate them all. We need a way to define an infinite set using a

finitedescription.
9. FORTRAN was defined by simply stating some rules in English.ALGOL 60

was defined with a context-free grammar developed by JohnBackus.
10.This method has become known as BNF or Backus Naur form (PeterNaur was

the editor of the ALGOL 60 report.) BNF provides a compact andclear

definition for the syntax of programming languages.

N] ABSTRACT SYNTAX, CONCRETE SYNTAX AND

PRAGMATICS:

1. Some language constructs in different programming languages have the

sameconceptual structure but differ in their appearance at the lexical level.

For example, the C fragmentcan both be described by simple lexical changes

in the EBNF rules of Figure 5
while (x!= y)
{
. . .
};
and the Pascal fragment
while x <> y do
begin
. . .
End

22
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

2. They differ from the simple programming language of Figure 5 only in

theway statements are bracketed (begin ... end vs. {...}), the “not equal”

operator(<> vs.! =), and the fact that the loop expression in C must be

enclosed withinparentheses.
3. When two constructs differ only at the lexical level, we say thatthey follow

the same abstract syntax, but differ at the concrete syntax level.
4. That is, they have the same abstract structure and differ only in lower-

leveldetails.Although, conceptually, concrete syntax may be irrelevant,

pragmatically itmay affect usability of the language and readability of

programs.
5. For example,symbol ¦ is obviously more readable than! =. As another

example, thesimple language of Figure 5 requires the body of while

statements and thebranches of conditionals to be bracketed by {and}.

23
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

6. Other languages, such asC or Pascal, allow brackets to be omitted in the case

of single statements. Forexample, one may write:
while (x != y) do x = y + 1;

7. Pragmatically, however, this may be error prone. If one more statement

needsto insert in the loop body, one should not forget to add brackets to

group thestatements constituting the body.
8. Modula-2 adopts a good concrete syntaxsolution, by using the “end”

keyword to terminate both loop and conditionalstatements. A similar

solution is adopted by Ada. The following are Modula examples:

if x = y then if x = y then while x = y do

end else end
 . .

End

In all three fragments, the “...” part can be either a single statement or

asequence of statements separated by a semicolon.
O] SEMANTICS:
Syntax defines well-formed programs of a language. Semantics defines the
meaning of syntactically correct programs in that language. For example, the
semantics of C help us determine that the declaration

int vector [10];
causes ten integer elements to be reserved for a variable named vector. The
first element of the vector may be referenced by vector [0]; all other

elementsmay be referenced by an index i, 0 <= i<= 9.
As another example, the semantics of C states that the instruction

if (a > b) max = a; else max = b;
Means that the expression a > b must be evaluated, and depending on its

value,one of the two given assignment statements is executed.
Note that the syntaxrules tell us how to form this statement–for example,

where to put a “;”–andthe semantic rules tell us what the effect of the

statement is.

24
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

The semantics of the language might require such expressions to deliver

atruth value (TRUE or FALSE, not–say–an integer value). In many cases,

suchrules that further constrain syntactically correct programs can be

verifiedbefore a program’s execution: they constitute static semantics, as

opposed todynamic semantics, which describes the effect of executing the

different constructsof the programming language. In such cases, programs

can be executedonly if they are correct both with respect to syntax and to

staticsemantics. In this section, we concentrate on the latter; i.e., any

reference tothe term “semantics” implicitly refers to “dynamic

semantics”.Axiomatic semantics views a program as a state machine.

Programming languageconstructs are described by describing how their

execution causes astate change.
A state is described by a first-order logic predicate whichdefines the property

of the values of program variables in that state. Thus themeaning of each

construct is defined by a rule that relates the two statesbefore and after the

execution of that construct.
Denotational semantics associates each language statement with a

functiondsem from the state of the program before the execution to the state

after execution.
The state (i.e., the values stored in the memory) is represented by afunction

mem from the set of program identifiers ID to values. Thus Denotational

semantics differs from axiomatic semantics in the way states aredescribed

(functions vs. predicates). For simplicity, we assume that valuescan only

belong to type integer.
P] LANGUAGE PROCESSING
1. Although in theory it is possible to build special-purpose computers to

execute directly programs written in any particular language, present-day

25
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

computers directly execute only a very low-level language, the machine

language.
2. Machine languages are designed on the basis of speed of execution, cost

of realization, and flexibility in building new software layers upon them.

On the other hand, programming languages often are designed on the

basis of the ease and reliability of programming.
3. A basic problem, then, is how a higherlevel language eventually can be

executed on a computer whose machine language is very different and at

a much lower level.
4. There are generally two extreme alternatives for an implementation:

interpretation and translation.
 Interpretation:
1. In this solution, the actions implied by the constructs of the language are

executed directly (see Figure 7). Usually, for each possible action there

exists a subprogram–written in machine language–to execute the action.

Thus, interpretation of a program is accomplished by calling

subprograms in the appropriate sequence.

26
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

More precisely, an interpreter is a program that repeatedly executes the

following sequence.
Get the next statement; Determine the actions to be executed; Perform the

actions; This sequence is very similar to the pattern of actions carried out by

a traditional computer, that is:
 Fetch the next instruction (i.e., the instruction whose address is

specified by the instruction pointer).
 Advance the instruction pointer (i.e., set the address of the instruction

to be fetched next).
 Decode the fetched instruction.
 Execute the instruction.

27
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

This similarity shows that interpretation can be viewed as a simulation, on a

host computer, of a special-purpose machine whose machine language is the

higher level language.
 Translation:
1. In this solution, programs written in a high-level language are translated

into an equivalent machine-language version before being executed.
2. This translation is often performed in several steps (see Figure 7).

Program modules might first be separately translated into relocatable

machine code; modules of relocatable code are linked together into a

single relocatable unit; finally, the entire program is loaded into the

computer’s memory as executable machine code.
3. The translators used in each of these steps have specialized names:

compiler, linker (or linkage editor), and loader, respectively.
4. In some cases, the machine on which the translation is performed (the

host machine) is different from the machine that is to run the translated

code (the target machine).
5. This kind of translation is called cross-translation. Crosstranslators offer

the only viable solution when the target machine is a specialpurpose

processor rather han a general-purpose one that can support a translator.
6. Pure interpretation and pure translation are two ends of a continuous

spectrum. In practice, many languages are implemented by a combination

of the two techniques.
7. A program may be translated into an intermediate code that is then

interpreted. The intermediate code might be simply a formatted

representation of the original program, with irrelevant information (e.g.,

comments and spaces) removed and the components of each statement

stored in a fixed format to simplify the subsequent decoding of

instructions. In this case, the solution is basically interpretive.

28
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

Alternatively, the intermediate code might be the (low-level) machine

code for a virtual machine that is to be later interpreted by software.
8. This solution, which relies more heavily on translation, can be adopted

for generating portable code, that is, code that is more easily transferable

to different machines than machine language code.
9. For example, for portability purposes, one of the best known initial

implementations of a Pascal compiler was written in Pascal and

generated an intermediate code, called Pcode. The availability of a

portable implementation of the language contributed to the rapid

diffusion of Pascal in many educational environments.
10.More recently, with the widespread use of Internet, code portability

became a primary concern for network application developers. A number

of language efforts have recently been undertaken with the goal of

supporting code mobility over a network.
11.Language Java is perhaps the best known and most promising example.

Java is first translated to an intermediate code, called Java bytecode,

which is interpreted in the client machine.
12.In a purely interpretive solution, executing a statement may require a

fairly complicated decoding process to determine the operations to be

executed and their operands.
13.Compilers and interpreters differ in the way they can report on run-time

errors. Typically, with compilation, any reference to the source code is

lost in the generated object code.
14.If an error is generated at run-time, it may be impossible to relate it to the

source language construct being executed. This is why run-time error

messages are often obscure and almost meaningless to the programmer.
15.On the opposite, the interpreter processes source statements, and can

relate a run-time error to the source statement being executed. For these

29
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

reasons, certain programming environments contain both an interpreter

and a compiler for a given programming language.
16.The interpreter is used while the program is being developed, because of

its improved diagnostic facilities.
17.The compiler is then used to generate efficient code, after the program

has been fully validated. Macro processing is a special kind of translation

that may occur as the first step in the translation of a program.
18.A macro is a named source text fragment, called the macro body.

Through macro processing, macro names in a text are replaced by the

corresponding bodies.
19.In C, one can write macros, handled by a preprocessor, which generates

source C code through macro expansion. For example, one can use a

macro to provide a symbolic name for a constant value, as in the

following fragment.

 The concept of binding:
1. Programs deal with entities, such as variables, routines, statements, and

so on. Program entities have certain properties called attributes.
2. For example, a variable has a name, a type, a storage area where its value

is stored; a routine has a name, formal parameters of a certain type,

certain parameter-passing conventions; a statement has associated

actions. Attributes must be specified before an entity is elaborated.

Specifying the exact nature of an attribute is known as binding. For each

entity, attribute information is contained in a repository called a

descriptor.

30
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

3. Binding is a central concept in the definition of programming language

semantics.
4. Programming languages differ in the number of entities with which they

can deal, in the number of attributes to be bound to entities, in the time at

which such bindings occur (binding time), and in the stability of the

binding (i.e., whether an established binding is fixed or modifiable).
5. A binding that cannot be modified is called static. A modifiable binding is

called dynamic.
6. Some attributes may be bound at language definition time, others at

program translation time (or compile time), and others at program

execution time (or run time).
7. The following is a (nonexhaustive) list of binding examples:

 Language definition time binding. In most languages (including

FORTRAN, Ada, C, and C++) the type "integer" is bound at language

definition time to its well-known mathematical counterpart, i.e., to a

set of algebraic operations that produce and manipulate integers;
 Language implementation time binding. In most languages (including

FORTRAN, Ada, C, and C++) a set of values is bound to the integer

type at language implementation time. That is, the language definition

states that type "integer" must be supported and the language

implementation binds it to a memory representation, which–in turn–

determines the set of values that are contained in the type.
 Compile time (or translation time) binding. Pascal provides a

predefined definition of type integer, but allows the programmer to

redefine it. Thus type integer is bound a representation at language

implementation time, but the binding can be modified at translation

time.

31
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

 Execution time (or run time) binding. In most programming languages

variables are bound to a value at execution time, and the binding can

be modified repeatedly during execution.
8. In the first two examples, the binding is established before run time and

cannot be changed thereafter. This kind of binding regime is often called

static. The term static denotes both the binding time (which occurs before

the program is executed) and the stability (the binding is fixed).
9. Conversely, a binding established at run time is usually modifiable during

execution. The fourth example illustrates this case.
10.This kind of binding regime is often called dynamic. There are cases,

however, where the binding is established at run time, and cannot be

changed after being established.
11.An example is a language providing (read only) constant variables that

are initialized with an expression to be evaluated at run time.
12.The concepts of binding, binding time, and stability help clarify many

semantic aspects of programming languages. In the next section we will

use these concepts to illustrate the notion of a variable.

Q] Variables:
1. Conventional computers are based on the notion of a main memory

consisting of elementary cells, each of which is identified by an address.

The contents of a cell is an encoded representation of a value.
2. A value is a mathematical abstraction; its encoded representation in a

memory cell can be read and (usually) modified during execution.

Modification implies replacing one encoding with a new encoding.

32
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

3. With a few exceptions, programming languages can be viewed as

abstractions, at different levels, of the behavior of such conventional

computers.
4. In particular, they introduce the notion of variables as an abstraction of

the notion of memory cells. the variable name as an abstraction of the

address. and the notion of assignment statements as an abstraction of the

destructive modification of a cell.
5. Formally, a variable is a 5-tuple <name, scope, type, l_value, r_value>,

where
 name is a string of characters used by program statements to denote

the variable;
 scope is the range of program instructions over which the name is

known;
 type is the variable’s type;
 l_value is the memory location associated with the variable;
 r_value is the encoded value stored in the variable’s location.

 Name and scope :
1. A variable’s name is usually introduced by a special statement, called

declaration and, normally, the variable’s scope extends from that point

until some later closing point, specified by the language.
2. The scope of a variable is the range of program instructions over which

the name is known. Program instructions can manipulate a variable

through its name within its scope.
3. We also say that a variable is visible under its name within its scope, and

invisible outside it. Different programming languages adopt different

rules for binding variable names to their scope.

33
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

4. The declaration int x, y; makes variables named x and y visible

throughout program main. The program contains an internal block, which

groups a declaration and statements.
5. The declaration int temp; appearing in the block makes a variable named

temp visible within the inner block, and invisible outside. Thus, it would

be impossible to insert temp as an argument of operation printf.
6. In the example, if the inner block declares a new local variable named x,

the outer variable named x would not be visible in it. The inner

declaration masks the outer variable. The outer variable, however,

continues to exist even though it is invisible. It becomes visible again

when control exits the inner block.
7. Variables can be bound to a scope either statically or dynamically. Static

scope binding defines the scope in terms of the lexical structure of a

program, that is, each reference to a variable can be statically bound to a

particular (implicit or explicit) variable declaration by examining the

program text, without executing it.
8. Static scope binding rules are adopted by most programming languages,

such as C, as we saw in the previous example.

34
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

9. Dynamic scope binding defines the scope of a variable's name in terms of

program execution. Typically, each variable declaration extends its effect

over all the instructions executed thereafter, until a new declaration for a

variable with the same name is encountered during execution. APL, LISP

(as originally defined), and SNOBOL4 are examples of languages with

dynamic

10.If the language follows dynamic scoping, an execution of block A

followed by block C would make variable x in the assignment in block C

to refer to x declared in block A.
11.Instead, an execution of block B followed by block C would make

variable x in the assignment in block C refer to x declared in block B.

Thus, name x in block C refers either to the x declared in A or the one

declared in B, depending on the flow of control followed during

execution.

35
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

12.Dynamic scope rules look quite simple and are rather easy to implement,

but they have disadvantages in terms of programming discipline and

efficiency of implementation.
13.Programs are hard to read because the identity of the particular

declaration to which a given variable is bound depends on the particular

point of execution, and so cannot be determined statically.
 Type:
1. We define the type of a variable as a specification of the set of values that

can be associated with the variable, together with the operations that can

be legally used to create, access, and modify such values.
2. A variable of a given type is said to be an instance of the type. When the

language is defined, certain type names are bound to certain classes of

values and sets of operations.
3. For example, type integer and its associated operators are bound to their

mathematical counterpart. Values and operations are bound to a certain

machine representation when the language is implemented.
4. The latter binding may also restrict the set of values that can be

represented, based on the storage capacity of the target machine.
5. In some languages, the programmer can define new types by means of

type declarations.
6. For example, in C one can write typedef int vector [10];

7. This declaration establishes a binding–at translation time–between the

type name vector and its implementation (i.e., an array of 10 integers,

each accessible via an index in the subrange 0. .9).
8. As a consequence of this binding, type vector inherits all the operations

of the representation data structure (the array); thus, it is possible to read

and modify each component of an object of type vector by indexing

within the array.

36
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

9. There are languages that support the implementation of user-defined

types (usually called abstract data types) by associating the new type with

the set of operations that can be used on its instances; the operations are

described as a set of routines in the declaration of the new type.
10.The declaration of the new type has the following general form,

expressed in C-like syntax:
11.typedef new_type_name

12.{ data structure representing objects of type new_type_name; routines to

be invoked for manipulating data objects of type new_type_name; }
13.To provide a preview of concepts and constructs that will be discussed at

length in this text, Figure 8 illustrates an example of an abstract data type

(a stack of characters) implemented as a C++ class1.
14.The class defines the hidden data structure (a pointer s to the first element

of the stack, a pointer top to the most recently inserted character, and an

integer denoting the maximum size) and five routines to be used for

manipulating stack objects.
15.Routines stack_of_char and ~stack_of_char are used to construct and

destruct objects of type stack_of_char, respectively. Routine push is used

to insert a new element on top of a stack object. Routine pop is used to

extract an element from a stack

37
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

16.Traditional languages, such as FORTRAN, COBOL, Pascal, C, C++,

Modula-2, and Ada bind variables to their type at compile time, and the

binding cannot be changed during execution.
17.This solution is called static typing. In these languages, the binding

between a variable and its type is specified by a variable declaration. For

example, in C one can write:int x, y; char c; By declaring variables to

belong to a given type, variables are automatically protected from the

application of illegal (or nonsensical) operations.
18.For example, in Ada the compiler can detect the application of the illegal

assignment I:= not A, if I is declared to be an integer and A is a boolean.

Through this check, the compiler watches for violations to static

semantics concerning variables and their types. The ability to perform

checks before the program is executed (static type checking) contributes

to early error detection and enhances program reliability.
19.Assembly languages, LISP, APL, SNOBOL4, and Smalltalk are

languages that establish a (modifiable) run-time binding between

variables and their type.
20.This binding strategy is called dynamic typing. Dynamically typed

variables are also called polymorphic variables (literally, from ancient

Greek, “multiple shape”) variables.
21.In most assembly languages, variables are dynamically typed. This

reflects the behavior of the underlying hardware, where memory cells

and registers can contain bit strings that are interpreted as values of any

type.
22.For example, the bist string stored in a cell may be added to the bit string

stored in a register using integer addition. In such a case, the bit strings

are interpreted as integer values.

38
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

23.In other languages, the type of a variable depends on the value that is

dynamically associated with it. For example, having assigned an integer

value to a variable, such value cannot be treated as if it were–say–a string

of characters.
24.That is, the binding is still dynamic, but once a value is bound to a

variable, an implicit binding with a type is also established, and the

binding remains in place until a new value is assigned.
25.As another example, in LISP, variables are not explicitly declared; their

type is implicitly determined by the value they currently hold during

execution. The LISP function CAR applied to a list L yields the first

element of L, which may be an atom (say, an integer) or a list of–say–

strings, if L is a list of lists.
26.If the element returned by CAR is bound to a variable, the type of such

variable would be an integer in the former case, a string list in the latter.

If such value is added to an integer value, the operation would be correct

in the former case, but would be illegal in the latter.
27.Moreover, suppose that the value of the variable is to be printed. The

effect of the print operation depends on the type that is dynamically

associated with the variable.
28.It prints an integer in the former case; a list of strings in the latter. Such a

print routine, which is applicable to arguments of more than one type, is

called a polymorphic routine.
 l_value :
1. The l_value of a variable is the storage area bound to the variable during

execution.
2. The lifetime, or extent, of a variable is the period of time in which such

binding exists. The storage area is used to hold the r_value of the

39
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

variable. We will use the term data object (or simply, object) to denote

the pair <l_value, r_value>.
3. The action that acquires a storage area for a variable–and thus establishes

the binding–is called memory allocation.
4. The lifetime extends from the point of allocation to the point in which the

allocated storage is reclaimed (memory deallocation).
5. In some languages, for some kinds of variables, allocation is performed

before run time and storage is only reclaimed upon termination (static

allocation). In other languages, it is performed at run time (dynamic

allocation), either upon explicit request from the programmer via a

creation statement or automatically, when the variable's declaration is

encountered, and reclaimed during execution.
6. In most cases, the lifetime of a program variable is a fraction of the

program's execution time. It is also possible, however, to have persistent

objects.
7. A persistent object exists in the environment in which a program is

executed and its lifetime has no a-priori relation with any given

program's execution time. Files are an example of persistent objects.
8. Once they are created, they can be used by different program activations,

and different activations of the same program, until they are deleted

through a specific command to the operating system. Similarly, persistent

objects can be stored in a database, and made visible to a programming

language through a specific interface.
 r_value:
1. The r_value of a variable is the encoded value stored in the location

associated with the variable (i.e., its l_value).
2. The encoded representation is interpreted according to the variable's type.

For example, a certain sequence of bits stored at a certain location would

40
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

be interpreted as an integer number if the variable’s type is int; it would

be interpreted as a string if the type is an array of char.
3. l_values and r_values are the main concepts related to program

execution. Program instructions access variables through their l_value

and possibly modify their r_value.
4. The terms l_value and r_value derive from the conventional form of

assignment statements, such as x = y; in C. The variable appearing at the

left-hand side of the assignment denotes a location (i.e., its l_value is

meant).
5. The variable appearing at the right-hand side of the assignment denotes

the contents of a location (i.e., its r_value is meant). Whenever no

ambiguity arises, we use the simple term “value” of a variable to denote

its r_value.
6. The binding between a variable and the value held in its storage area is

usually dynamic; the value can be modified by an assignment operation.
7. An assignment such as b = a; causes a's r_value to be copied into the

storage area referred to by b’s l_value. That is, b’s r_value changes. This,

however, is true only for conventional imperative languages, like

FORTRAN, C, Pascal, Ada, and C++.
8. Functional and logic programming languages treat variables as their

mathematical counterpart: they can be bound to a value by the evaluation

process, but once the binding is established it cannot be changed during

the variable's lifetime.
9. Some conventional languages, however, allow the binding between a

variable and its value to be frozen once it is established. The resulting

entity is, in every respect, a user-defined symbolic constant. For example,

in C one can write
10.const float pi = 3.1415; and then use pi in expressions such as

41
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

11.circumference= 2 * pi * radius;
12.Variable pi is bound to value 3.1416 and its value cannot be changed; that

is, the translator reports an error if there is an assignment to pi. A similar

effect can be achieved in Pascal.
13.Pascal and C differ in the time of binding between the const variable and

its value, although binding stability is the same for both languages. In

Pascal the value is provided by an expression that must be evaluated at

compile time; i.e., binding time is compile time.
14.The compiler can legally substitute the value of the constant for its

symbolic name in the program. In C and Ada the value can be given as an

expression involving other variables and constants: consequently, binding

can only be established at run time, when the variable is created.
R] References and unnamed variables:
1. Some languages allow unnamed variables that can be accessed through

the r_value of another variable. Such a r_value is called a reference (or a

pointer) to the variable.
2. In turn, the reference can be the r_value of a named variable, or it can be

the r_value of a referenced variable. Thus, in general, an object can be

made accessible via a chain of references (called access path) of arbitrary

length.
3. If A = <A_name, A_scope, A_type, A_l_value, A_r_value> is a named

variable, object <A_l_value, A_r_value> is said to be directly accessible

through name A_name in A_scope, with an access path of length 0.
4. If B= <--, --, --, B_l_value, B_r_value>, where -- stands for the “don’t

care value”, is a variable and B_l_value = A_r_value, object <B_l_value,

B_r_value> is said to be accessible through name A_name in A_scope

indirectly, with an access path of length 1.

42
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

5. Similarly, one can define the concept of an object indirectly accessible

through a named variable, with an access path of length i, i>1.
6. For example, in Pascal we can declare type PI (pointer to an integer):
7. type PI = ^ integer; We can then allocate an unnamed integer variable and

have it pointed by a variable pxi of type PI: new (pxi);
8. In order to access the unnamed object referenced by pxi, it is necessary to

use the dereferencing operator ^, which can be applied to a pointer

variable to obtain its r_value, i.e., the l_value of the referenced object.

For example, the value of the unnamed variable can be set to zero by

writing:

43
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

S] Routines:

44
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

1. Programming languages allow a program to be composed of a number

of units, called routines. The neutral term “routine” is used in this

chapter in order to provide a general treatment that enlightens the

important principles that are common to most programming

languages, without committing to any specific feature offered by

individual languages.
2. Routines can be developed in a more or less independent fashion and

can sometimes be translated separately and combined after translation.

Assembly language subprograms, FORTRAN subroutines, Pascal and

Ada procedures and functions, C functions are well-known examples

of routines.
3. In this chapter we will review the main syntactic and semantic

features of routines, and in particular the mechanisms that control the

flow of execution among routines and the bindings established when a

routine is executed.
4. Other, more general kinds of units, such as Ada packages, Modula-2

modules, and C++ classes will be described elsewhere.
5. In the existing programming language world, routines usually come in

two forms: procedures and functions.
6. Functions return a value; procedures do not. Some languages, e.g., C

and C++, only provide functions, but procedures are easily obtained

as functions returning the null value void. Figure 9 shows the example

of a C function definition.

45
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

7. Like variables, routines have a name, scope, type, l_value, and

r_value.
8. A routine name is introduced in a program by a routine declaration.

Usually the scope of such name extends from the declaration point on

to some closing construct, statically or dynamically determined,

depending on the language.
9. For example, in C a function declaration extends the scope of the

function till the end of the file in which the declaration occurs.

Routine activation is achieved through a routine call, which names the

routine and specifies the parameters on which the routine operates.

Since a routine is activated by call, the call statement must be in the

routine's scope.
10.Besides having their own scope, routines also define a scope for the

declarations that are nested in them. Such local declarations are only

visible within the routine.
11.Depending on the scope rules of the language, routines can also refer

to nonlocal items (e.g., variables) other than those declared locally.

Nonlocal items that are potentially referenced by every unit in the

program are called global items.

46
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

12.The header of the routine defines the routine’s name, its parameter

types, and the type of the returned value (if any). In brief, the routine’s

header defines the routine type. In the example of Figure 9, the

routine’s type is: routine with one int parameter and returning int A

routine type can be precisely defined by the concept of signature.
13.The signature specifies the types of parameters and the return type. A

routine fun which behaves like a function, with input parameters of

types T1, T2, . . ., Tn and returning a value of type R, can be defined

by the following signature:
 Generic routines:
1. Routines factor a code fragment that is executed at different points of the

program in a single place and assign it a name. The fragment is then

executed through invocation, and customized through parameters.
2. Often, however, similar routines must be written several times, because

they differ in some detail aspects that cannot be factored through

parameters.
3. For example, if a program needs both a routine to sort arrays of integers

and arrays of strings, two different routines must be written, one for each

parameter type, even if the abstract algorithm chosen for the

implementation of the sort operation is the same in both cases.
4. Generic routines, as offered by some programming languages, provide a

solution to this problem. In this section we provide a view of generic

routines as they appear in languages like C++ or Ada.
5. A generic routine can be made parametric with respect to a type. In the

previous example, the routine would be generic with respect to the type

of the array elements.
6. Type parameters in a generic routine, however, differ from conventional

parameters, and require a different implementation scheme.

47
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

7. A generic routine is a template from which the specific routine is

generated through Instantiation, an operation that binds generic

parameters to actual parameters at compile time.
8. Such binding can be obtained via macro processing, which generates a

new instance (i.e., an actual routine) for each type parameter. Other

implementation schemes, however, are also possible.

T] More on scopes: aliasing and overloading:

1. As our discussion so far emphasized, a central issue of programming

language semantics has to do with the conventions adopted for naming.

In programs, names are used to denote variables and routines.
2. The language uses special names (denoted by operators), such as + or *

to denote certain predefined operations. So far, we implicitly assumed

that at each point in a program a name denotes exactly one entity, based

on the scope rules of the language.
3. Since names are used to identify the corresponding entity, the

assumption of unique binding between a name and an entity would make

the identification unambiguous. This restriction, however, is almost never

true for existing programming languages.
4. For example, in C one can write the following fragment:

48
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

5. In the example, operator + in the two instructions of the program denotes

two different entities. In the first expression, it denotes integer addition;

in the second, it denotes floating-point addition.
6. Although the name is the same for the operator in the two expressions,

the binding between the operator and the corresponding operation is

different in the two cases, and the exact binding can be established at

compile time, since the types of the operands allow for the

disambiguation.
7. We can generalize the previous example by introducing the concept of

overloading.
8. A name is said to be overloaded if more than one entity is bound to the

name at a given point of a program and yet the specific occurrence of the

name provides enough information to allow the binding to be uniquely

established. In the previous example, the types of the operands to which

+ is applied allows for the disambiguation.
9. As another example, if the second instruction of the previous fragment

would be changed to a = b + c + b (); the two occurrences of name b

would (unambiguously) denote, respectively, variable b and routine b

with no parameters and returning a float value (assuming that such

routine is visible by the assignment instruction).
10.Similarly, if another routine named b, with one int parameter and

returning a float value is visible, instruction a = b () + c + b (i); would

unambiguously denote two calls to the two different routines.
11.Aliasing is exactly the opposite of overloading. Two names are aliases if

they denote the same entity at the same program point. This concept is

especially relevant in the case of variables.

49
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

12.Two alias variables share the same data object in the same referencing

environment. Thus modification of the object under one name would

make the effect visible, maybe unexpectedly, under the other.
U] An abstract semantic processor:

1. To describe the operational semantics of programming languages, we

introduce a simple abstract processor, called SIMPLESEM, and we show

how language constructs can be executed by sequences of operations of the

abstract processor.
2. In this section, we provide the main features of SIMPLESEM; additional

details will be introduced incrementally, as additional language features are

introduced.
3. In its basic form, SIMPLESEM consists of an instruction pointer (the

reference to the instruction currently being executed), a memory, and a

processor.
4. The memory is where the instructions to be executed and the data to be

manipulated are stored. For simplicity, we will assume that these two parts

are stored into two separate memory sections: the code memory (C) and the

data memory (D). Both C's and D's initial address is 0 (zero), and both

programs and data are assumed to be stored from the initial address. The

instruction pointer (ip) is always used to point to a location in C; it is

initialized to 0.
5. We use the notation D[X] and C[X] to denote the values stored in the X-th

cell of D and C, respectively. Thus X is an l_value and D[X] is the

corresponding r_value. Modification of the value stored in a cell is

performed by instruction set, with two parameters: the address of the cell

whose contents is to be set, and the expression evaluating the new value. For

50
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

example, the effect on the data memory of instruction set 10, D[20] is to

assign the value stored at location 20 into location 10.
6. Input/output in SIMPLESEM is achieved quite simply by using the set

instruction and referring to the special registers read and write, which

provide for communication of the SIMPLESEM machine with the outside

world.
7. For example, set 15, read means that the value read from the input device is

to be stored at location 15; set write, D[50] means that the value stored at

location 50 is to be transferred to the output device.
8. We are quite liberal in the way we allow values to be combined in

expressions; for example, D[15]+D[33]*D[41] would be a an acceptable

expression, and set 99, D[15]+D[33]*D[41] would be an acceptable

instruction to modify the contents of location 99.
9. As we mentioned, ip is SIMPLESEM's instruction pointer, which is

initialized to zero at each new execution and automatically updated as each

instruction is executed.
10.The machine, in fact, operates by executing the following steps repeatedly,

until it encounters a special halt instruction:
 Get the current instruction to be executed (i.e., C[ip]);
 2. Increment ip;
 3. Execute the current instruction.

11.Notice, however, that certain programming language instructions might

modify the normal sequential control flow, and this must be reflected by

SIMPLESEM. In particular, we introduce the following two instructions:

jump and jumpt.
12.The former represents an unconditional jump to a certain instruction. For

example, jump 47 forces the instruction stored at address 47 of C to be the

next instruction to be executed; that is, it sets ip to 47.

51
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

13.The latter represents a conditional jump, which occurs if an expression

evaluates to true. For example, in:
 jumpt 47, D[3] > D[8] the jump occurs only if the value stored in cell 3 is

greater than the value stored in cell 8.
 SIMPLESEM allows indirect addressing. For example:
 set D[10], D[20] assigns the value stored at location 20 into the cell

whose address is the value stored at location 10. Thus, if value 30 is

stored at location 10, the instruction modifies the contents of location 30.

Indirection is also possible for jumps. For example:
 jump D[13] jumps to the instruction stored at location 88 of C, if 88 is the

value stored at location 13.
14.SIMPLESEM, which is sketched in Figure 11, is quite simple. It is easy to

understand how it works and what the effects of executing its instructions

are.
15.In other terms, we can assume that its semantics is intuitively known; it does

not require further explanations that refer to other, more basic concepts. The

semantics of programming languages can therefore be described by rules

that specify how each construct of the language is translated into a sequence

of SIMPLESEM instructions.
16.Since SIMPLESEM is perfectly understood, the semantics of newly defined

constructs becomes also known. As we will see, however, SIMPLESEM will

also be enriched as new programming language concepts are introduced.

This will be done in this book incrementally, as we address the semantics of

new concepts.

52
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

V] Run-time structure:

1. In this section we discuss how the most important concepts related to the

execution-time processing of programming languages may be explained

using SIMPLESEM.
2. We will proceed gradually, from the most basic concepts to more complex

structures that reflect what is provided by modern general-purpose

programming languages. We will move through a hierarchy of languages

that are based on variants of the C programing language. They are named C1

through C5.
3. Our discussion will show that languages can be classified in several

categories, according to their execution-time structure.
4. Static languages. Exemplified by the early versions of FORTRAN and

COBOL, these languages guarantee that the memory requirements for any

program can be evaluated before program execution begins.
5. Therefore, all the needed memory can be allocated before program

execution. Clearly, these languages cannot allow recursion, because

recursion would require an arbitrary number of unit instances, and thus

memory requirements could not be determined before execution.

53
Prof: A.R.Jain

Sub- PPL Unit-I
Class-SE Comp

6. (As we will see later, the implementation is not required to perform the

memory allocation statically. The semantics of the language, however, give

the implementer the freedom to make that choice.)
7. However, their memory usage is predictable and follows a last-in-first-out

discipline: the latest allocated activation record is the next one to be

deallocated.
8. It is therefore possible to manage SIMPLESEM’s D store as a stack to

model the executiontime behavior of this class of languages. Notice that an

implementation of these languages need not use a stack (although, most

likely, it will): deallocation of discarded activation records can be avoided if

store can be viewed as unbounded. In other terms, the stack is part of the

semantic model we provide for the language; strictly speaking, it is not part

of the semantics of the language.
9. Fully dynamic languages These languages have un unpredictable memory

usage; i.e, data are dynamically allocated only when they are needed during

execution.
10.The problem then becomes how to manage memory efficiently. In particular,

how can unused memory be recognized and reallocated, if needed. To

indicate that store D is not handled according to a predefined policy (like a

FIFO policy for a stack memory), the term “heap” is traditionally used.

54
Prof: A.R.Jain

