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A] STRUCTURING OF DATA:

     WHAT IS A TYPE?

1. Programming languages organize data through the concept of type. Types are used as a way

to classify data according to different categories. 

2. They are more, however, than pure sets of data. Data belonging to a type also share certain

semantic behaviors. 

3. A type is thus more properly defined as a set of values and a set of operations that can be

used to manipulate them. 

4. For example, the type BOOLEAN of languages like Ada and Pascal consists of the values

TRUE and FALSE; Boolean algebra defines operators NOT, AND, and OR for BOOLEANs.

BOOLEAN values may be created, for example, as a result of the application of relational

operators (<, ð, >, Š, +, ¦) among INTEGER expressions.

B] Built-in types and primitive types:
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B-1]Advantages of built-in types:

1. Hiding  of  the  underlying  representation. This  is  an  advantage  provided  by  the

abstractions of higher-level languages over lower-level (machine-level) languages. The

programmer does not have access to the underlying bit string that represents a value of a

certain type. The programmer may change such bit string by applying operations, but the

change is visible as a new value of the built-in type, not as a new bit string. Invisibility of

the underlying representation has the following benefits:

Programming style. The abstraction provided by the language increases program

readability by protecting the representation of objects from undisciplined manipulation. 

This  contrasts  with  the  underlying  conventional  hardware,  which  does  not  enforce  

protection, but usually allows any view to be applied on any bit string. For example, a 

location containing an integer may be added to one containing a character, or even to a 

location containing an instruction.

Modifiability. The  implementation  of  abstractions  may  be  changed  without  

affecting the programs that make use of the abstractions. Consequently, portability of  

programs is also improved, that is, programs can be moved to machines that use different 

internal data representations. One must be careful, however, regarding the precision of 

data representation, that might change for different implementations. For example, the  

range of representable integer values is different for 16- and 32-bit machines.

2. Correct use of variables can be checked at translation time. If the type of each variable

is  known to  the  compiler,  illegal  operations  on  a  variable  may  be  caught  while  the
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program is translated. Although type checking does not prevent all possible errors to be

caught, it improves our reliance on programs. For example, in Pascal or Ada, it cannot

ensure that J will never be zero in some expression I/J, but it can ensure that it will never

be a character.

3. Resolution  of  overloaded  operators  can  be  done  at  translation  time.  For  readability

purposes, operators are often overloaded. For example, + is used for both integer and real

addition,  * is  used for both integer  and real multiplication.  In each program context,

however, it  should be clear which specific hardware operation is to be invoked, since

integer and real arithmetic differ. In a statically typed language, where all variables are

bound to their type at translation time, the binding between an overloaded operator and

its corresponding machine operation can be established at translation time, since the types

of  the  operands  are  known.  This  makes  the  implementation  more  efficient  than  in

dynamically typed languages, for which it is necessary to keep track of types in run-time

descriptor. 

4. Accuracy control. In some cases, the programmer can explicitly associate a specification

of the accuracy of the representation with a type. For example, FORTRAN allows the

user to choose between single and double-precision floating-point numbers. In C, integers

can be short int, int, or long int. Each C compiler is free to choose appropriate size for its

underlying hardware, under the restriction that short int and int are at least 16 bits long, 

long int is at least 32 bits long, and the number of bits of short int is no more than the 

number of bits of int, which is no more than the number of bits of long int. In addition, it

is possible to specify whether an integer is signed or unsigned. Similarly, C provides both

float  (for  single-precision  floating  point  numbers)  and  double  (for  double  precision  

floating point  numbers).  Accuracy specification allows the programmer to  direct  the  

compiler to allocate the exact amount of storage that is needed to represent the data with

the desired precision.

C] Data aggregates and type constructors:

1. Programming languages  allow the programmer to  specify aggregations  of  elementary

data objects  and,  recursively,  aggregations  of  aggregates.  They do so by providing a

number of constructors. The resulting objects are called compound objects.
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2. A  well-known  example  is  the  array  constructor,  which  constructs  aggregates  of

homogeneous-type elements. An aggregate object has a unique name.

3. In some cases, manipulation can be done on a single elementary component at a time,

each component being accessible by a suitable selection operation. In many languages, it

is  also  possible  to  manipulate  (e.g.,assign  and  compare)  entire  aggregates.  Older

programming  languages,  such  as  FORTRAN  and  COBOL,  provided  only  a  limited

number of constructors.

4. For example, FORTRAN only provided the array constructor; COBOL only provided the

record  constructor.  In  addition,  through  constructors,  they  simply  provided  a  way  to

define a new single aggregate object, not a type.

5. Later  languages,  such  as  Pascal,  allowed  new  compound  types  to  be  defined  by

specifying them as aggregates of simpler types. In such a way, any number of instances

of the newly defined aggregate can be defined. According to such languages, constructors

can be used to define both aggregate objects and new aggregate types.

 Cartesian product:

1. The Cartesian product of n sets A 1 , A 2 , . . ., A n , denoted A 1 x A 2 x . . . x A n , is a

set whose elements are ordered n -tuples ( a 1 , a 2 , . . ., a n ), where each a k belongs to

A k .

2. Programming languages view elements of a Cartesian product as composed of a number

of symbolically named fields. In the example, a polygon could be declared as composed

of  an  integer  field  (  no_of_edges  )  holding  the  number  of  edges  and  a  real  field

( edge_size ) holding the length of each edge. 

3. Examples of Cartesian product constructors in programming languages are structures in

C, C++, Algol 68 and PL/I, records in COBOL, Pascal, and Ada. COBOL was the first

language  to  introduce  Cartesian  products,  which  proved  to  be  very  useful  in  data

processing applications. 

4. As an example of a Cartesian product constructor, consider the following C declaration,

which defines a new type reg_polygon and two objects a_pol and b_pol ;

struct reg_polygon {

int no_of_edges;
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float edge_size;

};

struct reg_polygon pol_a, pol_b = {3, 3.45};

5. The two regular polygons pol_ a and pol_b are initialized as two equilateral triangles

whose edge is 3.45. The notation {3, 3.45} is used to implicitly define a constant value

(also called a compound value) of type reg_polygon (the polygon with 3 edges of length

3.45 ). 

6. The fields of an element of a Cartesian product are selected by specifying their name in

an appropriate syntactic notation. In the C example, one may write:

pol_a.no_of_edges = 4;

7. to make pol_a quadrilateral. This syntactic notation for selection, which is common in

programming languages, is called the dot notation.

 Powerset:

1. It is often useful to define variables whose value can be any subset of a set of elements of

a given type T . The type of such variables is powerset (T) , the set of all subsets of

elements of type T . Type T is called the base type. For example, suppose that a language

processor accepts the following set O of options

LIST_S, to produce a listing of the source program;

LIST_O, to produce a listing of the object program;

OPTIMIZE, to optimize the object code;

SAVE_S, to save the source program in a file;

SAVE_O, to save the object program in a file;

EXEC, to execute the object code.

A command to the processor can be any subset of O , such as

{LIST_S, LIST_O}

{LIST_S, EXEC}

That is, the type

{OPTIMIZE, SAVE_O, EXEC}

of a command is powerset (O) .
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2. Variables of type powerset (T) represent sets. The operations permitted on such variables

are  set  operations,  such as  union and intersection.  Although sets  (and powersets)  are

common and basic  mathematical  concepts,  only a  few languages–notably,  Pascal  and

Modula-2–provide them through built-in constructors and operations. 

3. Also, the set-based language SETL makes sets the very basic data structuring mechanism.

For most other languages, set data structures are provided through libraries. For example,

the C++ standard library provides many data structures, including sets.

 Sequencing: 

1. A sequence consists of any number of occurrences of elements of a certain component

type CT.  The important  property of the sequencing constructor  is  that  the number of

occurrences of the component is unspecified; it therefore allows objects of arbitrary size

to be represented. 

2. It  is  rather  uncommon  for  programming  languages  to  provide  a  constructor  for

sequencing.  In  most  cases,  this  is  achieved  by invoking  operating  system primitives

which access the file system. 

3. It  is  therefore  difficult  to  imagine  a  common  abstract  characterization  of  such  a

constructor. Perhaps the best example is the file constructor of Pascal, which models the

conventional data processing concept of a sequential  file.  Elements of the file can be

accessed sequentially, one after the other. 

4. Modifications can be accomplished by appending a new values at the end of an existing

file. Files are provided in Ada through standard libraries, which support both sequential

and  direct  files.  Arrays  and  recursive  list  definitions  (defined  next)  may  be  used  to

represent sequences, if they can be stored in main memory. 

5. If the size of the sequence does not change dynamically, arrays provide the best solution.

If the size needs to change while the program is executing, flexible arrays or lists must be

used.  The  C++  standard  library  provides  a  number  of  sequence  implementations,

including vector and list.
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 Finite mapping

1. Finite mapping is a function from a finite set of values of a domain type DT onto values

of a range type RT . Such function may be defined in programming languages through the

use of the mechanisms provided to define routines. 

2. This would encapsulate in the routine definition the law associating values of type RT to

values  of  type  DT .  This  definition  is  called  intensional.  In  addition,  programming

languages, provide the array constructor to define finite mappings as data aggregates.

This definition is called extensional, since all the values of the function are explicitly

enumerated. For example, the C declaration

char digits [10];

3. defines a mapping from integers in the subrange 0 to 9 to the set of characters, although it

does  not  state  which  character  corresponds  to  each  element  of  the  subrange.  The

following statements

for (i = 0; i < 10; ++i)

digits [i] = ’ ’;

4. define one such correspondence, by initializing the array to all blank characters. This

example also shows that an object in the range of the function is selected by indexing,

that is, by providing the appropriate value in the domain as an index of the array. 

5. Thus the C notation digits [i] can be viewed as the application of the mapping to the

argument i . Indexing with a value which is not in the domain yields an error. Some

languages specify that such an error is to be trapped. 

6. Such a trap,  however,  may in general  only occur  at  run time.  C arrays  provide only

simple types of mappings, by restricting the domain type to be an integer subrange whose

lower bound is zero. 

7. Other programming languages, such as Pascal, require the domain type to be an ordered

discrete type. For example, in Pascal, it is possible to declare 

var x: array [2. .5] of integer;

8. which defines x to be an array whose domain type is the subrange 2. .5.
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Union and discriminated union

9. Cartesian products defined in Section C allow an aggregate to be constructed through the

conjunction of its fields. For example,  we saw the example of a polygon, which was

represented as an integer (the number of edges) and a real (the edge size). In this section

we explore  a  constructor  which  allows  an  element  (or  a  type)  to  be  specified  by  a

disjunction of fields. 

10. For example, suppose we wish to define the type of a memory address for a machine

providing both absolute and relative addressing. If an address is relative, it must be added

to the value of some INDEX register in order to access the corresponding memory cell.

Using C, we can declare union address 

11. {

12. short int offset;

13. long unsigned int absolute;

14. };

15. The declaration is very similar to the case of a Cartesian product. The difference is that

here fields are mutually exclusive. Values of type address must be treated differently if

they denote offsets or absolute addresses. 

16. Given a variable of type address, however, there is no automatic way of knowing what

kind of value is currently associated with the variable (i.e., whether it is an absolute or a

relative address).

17. The burden of  remembering  which  of  the  fields  of  the  union is  current  rests  on the

programmer.  A possible  solution  is  to  consider  an  address  to  be  an  element  of  the

following type:

18. struct safe_address {

19. address location;

20. descriptor kind;

21. };

22. where descriptor is defined as an enumeration enum descriptor {abs, rel};
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23. A safe address is defined as composed of two fields: one holds an address, the other holds

a descriptor. The descriptor field is used to keep track of the current address kind. Such a

field must be updated for each assignment to the corresponding location field.

 Compound values

1. Besides  supporting  the  ability  to  define  structured  variables,  some  languages  allow

constant values of compound (or composite) objects to be denoted. For example, in C++

one can write:

2. char hello[ ] = {’h’, ’e’, ’l’, ’l, ’o’, ’\0’};

struct complex {

float x, y;

};

complex a = {0.0, 1.1};

3. This fragment initializes array hello to the array value {’h’, ’e’, ’l’, ’l,’ ’o’, ’\0’} , i.e., the

string "hello" ( ’\0’ is the null character denoting the end of the string). Structure a is

initialized to the structure value {0.0, 1.1} . Ada provides a rich and elaborate set of

facilities to define values of compound objects.

D] User-defined types and abstract data types:

 User-defined types 

1. Modern programming languages provide many ways of defining new types, starting from

built-in  types.  The  simplest  way,  mentioned  in  Section  B,  consists  of  defining  new

elementary types by enumerating their values. 

2. The constructors reviewed in the previous sections go one step further, since they allow

complex data structures to be composed out of the built-in types of the language. Modern

languages also allow aggregates built through composition of built-in types to be named

as new types. 

3. Having  given  a  type  name to  an  aggregate  data  structure,  one  can  declare  as  many

variables of that type as necessary by simple declarations. 

4. For example, after the C declaration which introduces a new type name complex.

struct complex {

float real_part, imaginary_part;
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}

any number of instance variables may be defined to hold complex values: complex a, b, c, . . .;

5. By providing appropriate type names, program readability can be improved. In addition,

by factoring the definition of similar data structures in a type declaration, modifiability is

also improved.

6.  A change that needs to be applied to the data structures is applied to the type, not to all

variable  declarations.  Factorization  also  reduces  the  chance  of  clerical  errors  and

improves consistency. The ability to define a type name for a user defined data structure

is only a first step in the direction of supporting data abstractions.

 Abstract data types in C++

1. Abstract data types can be defined in C++ through the class construct. A class encloses

the definition of a new type and explicitly provides the operations that can be invoked for

correct use of instances of the type. 

2. As an example, Figure shows a class defining the type of the geometrical concept of

point. 

class point {

int x, y;

public:

point (int a, int b) { x = a; y = b; }

void x_move (int a) { x += a; }

void y_move (int b ){ y += b; }

void reset ( ) { x = 0; y = 0; }

};

3. A class can be viewed as an extension of structures (or records), where fields can be both

data and routines. The difference is that only some fields (declared public) are accessible

from outside the class. 

4. Non-public fields are hidden to the users of the class. In the example, the class construct

encapsulates both the definition of the data structure defined to represent points (the two

integer numbers x and y ) and of the operations provided to manipulate points.
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5. The data  structure which defines a  geometrical  point  (two integer  coordinates) is  not

directly accessible by users of the class. Rather, points can only be manipulated by the

operations defined as public routines, as shown by the following fragment:

point p1 (1, 3);

point p2 (55, 0);

point* p3 = new point (0, 0);

p1.x_move (3);

p2.y_move (99);

p1.reset ( );

6. The fragment shows how operations are invoked on points by means of the dot notation;

that  is,  by  writing  “object_name.public_routine_name”.  The  only  exceptions  are  the

invocations of constructors and destructor. We discuss constructors below; destructor will

be discussed in a later example.

7. A constructor is an operation that has the same name of the new type being defined (in

the example, point ). A constructor is automatically invoked when an object of the class is

allocated. In the case of points p1 and p2 , this is done automatically when the scope in

which  they  are  declared  is  entered.  In  the  case  of  the  dynamically  allocated  point

referenced by p3 , this is done when the new instruction is executed. 

8. Invocation  of  the  constructor  allocates  the  data  structure  defined  by  the  class  and

initializes its value according to the constructor’s code. A special type of constructor is a

copy constructor. The constructor we have seen for point builds a point out of two int

values. 

9. A copy constructor is able to build a point out of an existing point. The signature of the

copy constructor would be:

point (point&)

10. It is also possible to define generic abstract data types, i.e., data types that are parametric

with respect to the type of components. The construct provided to support this feature is

the template.
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E] Type systems:

1. Types  are  a  fundamental  semantic  concept  of  programming  languages.  More-over,

programming languages differ in the way types are defined and behave, and typing issues

are often quite subtle. 

2. Having discussed type concepts informally in different languages so far, we now review

the foundations for a theory of types. 

3. The goal is to help the reader understand the type system adopted by a language, defined

as the set of rules used by the language to structure and organize its collection of types.

Understanding  the  type  system adopted  by  a  language  is  perhaps  the  major  step  in

understanding the language’s semantics.

 Static versus dynamic program checking

1. Before focusing our discussion on type errors, a brief digression is necessary to discuss

more generally the kinds of errors that may occur in a program, the different times at

which such errors can be checked, and the effect of checking times on the quality of the

resulting programs.

2. Errors  can  be  classified  in  two  categories:  language  errors  and  application  errors.

Language  errors  are  syntactic  and  semantic  errors  in  the  use  of  the  programming

language.  Application  errors  are  deviations  of  the  program behavior  with  respect  to

specifications (assuming specifications capture the required behavior correctly). 

3. The programming language should facilitate both kinds of errors to be identified and

removed. Ideally, it should help prevent them from being introduced in the program. In

general, programs that are readable and well structured are less error prone and easier to

check. 

4. Hereafter we concentrate on language errors. A discussion of application errors is out of

the scope of this book: software design methods address application errors. Therefore,

here the term “error” implicitly refers to “language error”. 

5. Error checking can be accomplished in different ways, that can be classified in two broad

categories: static and dynamic. Dynamic checking requires the program to be executed on

sample input data. 
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6. Static checking does not. In general, if a check can be performed statically, it is preferable

to do so instead of delaying the check to run-time for two main reasons. First, potential

errors are detected at run time only if one can provide input data that cause the error to be

revealed. For example, a type error might exist in a portion of the program that is not

executed by the given input data. 

7. Second,  dynamic  checking  slows  down  program  execution.  Static  checking  is  often

called  compile-time  (or  translation-time)  checking.  Actually,  the  term  “compile-time

checking” may not be an accurate synonym of “static checking”, since programs may be

subject to separate compilation and some static checks might occur at link time. 

8. For example, the possible mismatch between a routine called by one module and defined

in another might be checked at link time. Conventional linkers, unfortunately, seldom

perform such checks. 

9. For simplicity, we will continue to use the terms static checking and compile-time (or

translation-time)  checking  interchangeably.  Static  checking,  though  preferable  to

dynamic checking, does not uncover all language errors. 

10. Some errors only manifest themselves at run time. For example, if div is the operator for

integer division, the compiler might check that both operands are integer. However, the

program would  be  erroneous  if  the  value  of  the  divisor  is  zero.  This  possibility,  in

general, cannot be checked by the compiler.

 Strong typing and type checking

1. The type system of a language was defined as the set of rules to be followed to define and

manipulate  program data.  Such rules  constrain the set  of  legal  programs that  can  be

written in a language. 

2. The goal of a type system is to prevent the writing of type unsafe programs as much as

possible. A type system is said to be strong if it guarantees type safety; i.e., programs

written by following the restrictions of the type system are guaranteed not to generate

type errors.

3.  A language with a  strong type  system is  said to  be a  strongly  typed language.  If  a

language is strongly typed, the absence of type errors from programs can be guaranteed
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by the compiler. A type system is said to be weak if it is not strong. Similarly, a weakly

typed language is a language that is not strongly typed.

✔ Type compatibility

1. A strict type system might require operations that expect an operand of a type T to be

invoked legally only with a parameter of type T . Languages, however, often allow more

flexibility, by defining when an operand of another type say Q –is also acceptable without

violating type safety. 

2. In  such a  case,  we say that  the  language defines  whether,  in  the  context  of  a  given

operation, type Q is compatible with type T . Type compatibility is also sometimes called

conformance or equivalence. When compatibility is defined precisely by the type system,

a type checking procedure can verify that all operations are always invoked correctly, i.e.,

the types of the operands are compatible with the types expected by the operation. 

3. Thus a  language defining a notion of  type compatibility  can still  have a  strong type

system.  Figure  38  shows  a  sample  program  fragment  written  in  a  hypothetical

programming language.

struct s1{

int y;

int w;

};

struct s2{

int y;

int w;

};

struct s3 {

int y;

};

s3 func (s1 z)

{

. . .

};
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. . .

s1 a, x;

s2 b;

s3 c;

int d;

. . .

a = b; --(1)

x = a; --(2)

c = func (b); --(3)

d = func (a); --(4) 

4. The strict conformance rule where a type name is only compatible with itself is called

name compatibility. Under name compatibility, in the above example, instruction (2) is

type correct, since a and x have the same type name. Instruction (1) contains a type error,

because a  and b have different  types.  Similarly,  instructions (3) and (4)  contain type

errors. 

5. In (3) the function is  called with an argument  of incompatible type; in (4) the value

returned by the function is  assigned to a variable  of an incompatible type.  Structural

compatibility is another possible conformance rule that languages may adopt. 

6. Type T1 is structurally compatible with type T2 if they have the same structure. This can

be defined recursively as follows: 

• T1 is name compatible with T2; or

• T1 and T2 are defined by applying the same type constructor to structurally compatible

corresponding type components. 

7. According  to  structural  equivalence,  instructions  (1),  (2),  and  (3)  are  type  correct.

Instruction (4) contains a type error, since type s3 is not compatible with int. 

8. Note that the definition we gave does not clearly state what happens with the field names

of Cartesian products (i.e., whether they are ignored in the check or they are required to

coincide and whether structurally compatible fields are required to occur in the same

order or not). 
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9. For simplicity, we assume that they are required to coincide and to occur in the same

order.  In such a case, if we rename the fields of s2 as y1 and w1 , or permute their

occurrence, s2 would no longer be compatible with s1 .

✔ Type conversions

1. Suppose that an object of type T 1 is expected by some operation at some point of a

program. Also, suppose that an object of type T 2 is available and we wish to apply the

operation to such object. 

2. If  T 1  and T 2  are  compatible  according  to  the  type  system,  the  application  of  the

operation  would  be  type  correct.  If  they  are  not,  one  might  wish  to  apply  a  type

conversion from T 2 to T 1 in order to make the operation possible. 

3. More precisely, let an operation be defined by a function fun expecting a parameter of

type T 1 and evaluating a result of type R 1 : fun: T 1 -> R 1

4. Let x 2 be a variable of type T 2 and y 2 of type R 2 . Suppose that T 1 and T 2 ( R 1 and

R 2 ) are not compatible. How can fun be applied to x 2 and the result of the routine be

assigned to y 2 ? This would require two conversion functions to be available, t 21 and r

12 , transforming objects of type T 2 into objects of type T 1 and objects of type R 1 into

objects of type R 2 , respectively:

t 21 : T 2 -> T 1

r 12 : R 1 -> R 2

5. Thus, the intended action can be performed by first applying t 21 to x 2 , evaluating fun

with such argument, applying r 12 to the result of the function, and finally assigning the

result to y 2 . That is:

(i) y 2 = r 12 (fun (t 21 (x 2 )))

6. For some languages any required conversions are applied automatically by the compiler.

Following the Algol 68 terminology, we will call such automatic conversions coercions.

In the example, if coercions are available, the programmer might simply write

(ii) y 2 = fun (x 2 )

7. and  the  compiler  would  automatically  convert  (ii)  into  (i)  .  In  general,  the  kind  of

coercion that may occur at a given point (if any) depends on the context. For example, in

C if we write
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x = x + z;

8. where z is float and x is int , x is coerced to float to evaluate the arithmetic operator +

(which stands for real addition), and the result is coerced to int for the assignment. That

is, the arithmetic coercion is from int to float , but the assignment coercion is from float

to int . 

9. C provides a simple coercion system. In addition, explicit conversions can be applied in

C using the cast construct. For example, a cast can be used to override an undesirable

coercion that would otherwise be applied in a given context. For example, in the above

assignment, one can force a conversion of z to int by writing

x = x + (int) z;

10. Such an explicit conversion in C is semantically defined by assuming that the expression

to be converted is implicitly assigned to an unnamed variable of the type specified in the

cast, using the coercion rules of the language.

11. The conversion function INTEGER provided by Ada computes an integer from a floating

point  value  by  rounding  to  the  nearest  integer.  The  existence  of  coercion  rules  in  a

language has both advantages and disadvantages. 

12. The  advantage  is  that  many  desirable  conversions  are  automatically  provided  by the

implementation. 

13. The disadvantage is  that since implicit  transformations happen behind the scenes, the

language becomes  complicated and programs may be obscure.  In  addition,  coercions

weaken the usefulness of type checking, since they override the declared type of objects

with default, context sensitive transformations.

✔ Types and subtypes

1. If a type is defined as a set of values with an associated set of operations, a subtype can

be defined to be a subset of those values (and, for simplicity, the same operations). In this

section we explore this  notion in the context  of conventional  languages,  ignoring the

ability to specify user-defined operations for subtypes.  

2. If ST is a subtype of T , T is also called ST ’s supertype (or parent type). We assume that

the operations defined for T are automatically inherited by ST . A language supporting

subtypes must define: 
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1. a way to define subsets of a given type;

2. compatibility rules between a subtype and its supertype.

3. Pascal was the first programming language to introduce the concept of a subtype, as a

subrange of any discrete ordinal type (i.e., integers, boolean, character, enumerations, or a

subrange thereof). For example, in Pascal one may define natural numbers and digits as

follows:

type natural = 0. .maxint;

digit = 0. .9;

small = -9. .9;

where maxint is the maximum

integer value representable by an implementation.

4. A Pascal program can only define a subset of contiguous values of a discrete type. For

example, it cannot define a subtype EVEN of all even integers or multiples of ten in the

range -1000. .1000. Different subtypes of a given type are considered to be compatible

among themselves and with the supertype.

5. However,  type safe operations are not guaranteed to evaluate with no error.  No error

arises  if  an  object  of  a  subtype  is  provided in  an  expression  where  an  object  of  its

supertype is expected. For example, if an expression requires an integer, one may provide

a natural; if it expects a natural, one might provide a digit. 

6. If, however, a small is provided where a digit is expected, an error arises if the value

provided is not in the range expected. That is, if an argument of type T is provided to an

operation expecting an operand of type R , the expression is type safe if either R or T is a

subtype of the other, or both are subtypes of another type Q .

7. No value error will occur at run time if T is a subtype of R . In all other cases, the

operation must be checked at run time and an error may arise if the value transmitted

does not belong to the expected type. Ada provides a richer notion of subtype than Pascal.

A subtype of an array type can constrain its index; a subtype of a variant record type can

freeze the variant; a subtype of a discrete ordinal type is a finite subset of contiguous

values. 

8. Examples of Ada types and subtypes are shown in Figure.

type Int_Vector is array (Integer range < >) of Integer;
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type Var_Rec (Tag: Boolean) is

record X: Float;

case Tag of

when True => Y: Integer;

Z: Real;

when False=> U: Char;

end case;

end record;

subtype Vec_100 is Int_Vector (0. .99);

--this subtype constrains the bounds of the array to 0. .99

subtype X_true is X (True);

--this subtype freezes the variant where Tag = True; objects of the subtype thus

--have fields X, Y, and Z;

subtype SMALL is Integer range -9. .9;

--this subtype defines a small set of integers 

9. Ada subtypes do not define new types. All values of all subtypes of a certain type T are of

type T. The subtype construct can be viewed as a way to signal that certain run-time

checks must be inserted by the compiler to ensure that objects of a given subtype always

receive the specified restricted set of values.

✔ Generic types

1. As we mentioned, modern languages allow parameterized (generic) abstract data types to

be  defined.  A typical  example  is  a  stack  of  elements  of  a  parameter  type  T,  whose

operations have the following signatures:

push: stack (T) x T -> stack (T)

pop: stack (T) -> stack (T) x T

length: stack (T) -> int

--pushes an element on top of the stack

--extracts the topmost element from the stack

--compute the length of the stack
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2.  In the example, the abstract data type being defined is parametric with respect to a type,

and the operations of the generic type are therefore defined as generic routines. 

3. The operations defined for the type stack(T) are supposed to work uniformly for any

possible type T . However, since the type is not known, how can such routines be type

checked to guarantee type safety? 

4. A possibility is provided by languages like Ada, C++, and Eiffel, where generic types

must be explicitly instantiated at compile time by binding parameter types to “real” types,

that are known at compile time. 

5. This achieves static typing for each instance of each generic type, and therefore each

instance is statically checked to ensure type safety.

✔ Monomorphic versus polymorphic type systems:

1. A simple strong type system can be provided by a statically typed language where every

program entity (constant, variable, routine) has a specific type, defined by a declaration,

and every  operation  requires  that  an operand of  exactly  the  type  that  appears  in  the

operation definition can be provided. 

2. For such a language, it is possible to verify at compile time that any occurrence of that

constant, variable, or routine is type correct. Such a type system is called monomorphic

(from ancient Greek, “single shape”): every object belongs to one and only one type. 

3. By contrast, in a polymorphic (“multiple shape”) programming languages every constant

and every  variable  can  belong to  more  than  one  type.  Routines  (e.g.,  functions)  can

accept as a formal parameter actual parameters of more than one type.

4. By  examining  closely  traditional  programming  languages  like  C,  Pascal,  or  Ada,

however, we have seen in the previous secions that all deviate from strict monomorphism

in one way or another. 

5. Polymorphism can  be  classified  as  shown in  Figure.  For  the  sake  of  simplicity  and

abstraction, let us discuss Figure in the case of polymorphic functions, i.e., mathematical

functions whose arguments (domain and range) can belong to more than one type. 
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Fig: Ploymorphism

6. A first distinction is between universal polymorphism and ad-hoc polymorphism. Ad-hoc

polymorphism does not really add to the semantics of a monomorphic language. Ad-hoc

polymorphic functions work on a finite and often small set of types and may behave

differently for each type. 

7. Universal polymorphism characterizes functions that work uniformly for an infinite set of

types,  all  of  which  have  some  common  structure.  Whereas  an  ad-hoc  polymorphic

function  can  be  viewed  as  a  syntactic  abbreviation  for  a  small  set  of  different

monomorphic functions, a universal polymorphic function executes the same code for

arguments of all  admissible  types.  The two major kinds of ad-hoc polymorphism are

overloading and coercion.In overloading, the same function name can be used in different

contexts to denote different functions, and in each context the function actually denoted

by a given name is uniquely determined. 

8. A coercion is an operation that converts the argument of a function to the type expected

by the function. In such a case, polymorphism is only apparent: the function actually

works for its prescribed type, although the argument of a different type may be pased to

it, but it is automatically transformed to the required type prior to function evaluation. 

9. Coercions can be provided statically by code inserted by the compiler  in the case of

statically typed languages, or they are determined dynamically by run-time tests on type

descriptors, in the case of dynamically typed languages. 
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10. Overloading  and  coercion  can  be  illustrated  by  the  C  example  of  the  arithmetic

expression a + b . In C, + is an ad-hoc polymorphic function, whose behavior is different

if it is applied to float values or int numbers. In the two cases, the two different machine

instructions float+ (for real addition) or int+ would be needed. 

11. If the two operands are of the same type–say, float –the + operator is bound to float+ ; if

both are bound to int , + is bound to int+ . The fact that + is an overloaded operator is a

purely syntactic phenomenon. Since the types of the operands are known statically, one

might  eliminate  overloading statically  by substituting the  overloaded + operator  with

float+ or int+ , respectively. 

12. If the types of the two operands are different (i.e., integer plus real or real plus integer),

however, the float+ operator is invoked after converting the integer operand to real.

F] Structuring of Computations: 

✔ Expressions and statements

1. Expressions  define  how a  value  can  be  obtained by combining other  values  through

operators. The values from which expresions are evaluated are either denoted by a literal,

as in the case of the real value 57.73, or they are the r_value of a variable.

2. Operators  appearing  in  an  expression  denote  mathematical  functions.  They  are

characterized  by  their  aritiy  (i.e.,  number  of  operands)  and  are  invoked  using  the

function’s signature. A unary operator is applied to only one operand. A binary operator is

applied to two operands. In general, a n-ary operator is applied to n operands. 

3. For example, ’-’ can be used as a unary operator to transform–say–the value of a positive

expression into a negative value. In general, however, it is used as a binary operator to

subtract the value of one expression from the value of another expression. Functional

routine  invocations  can  be  viewed  as  n-ary  operators,  where  n  is  the  number  of

parameters. 

4. Regarding the operator’s notation, one can distinguish between infix, prefix, and postfix.

Infix notation is the most common notation for binary operators: the operator is written

between its two operands, as in x + y . 
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5. Postfix and prefix notations are common especially for non-binary operators. In prefix

notation, the operator appears first, and then the operands follow. This is the conventional

form of function invocation, where the function name denotes the operator. 

6. In postfix notation the operands are followed by the corresponding operator. Assuming

that the arity of each operator is fixed and known, expressions in prefix and postfix forms

may be written without resorting to parentheses to specify subexpressions that are to be

evaluated first. For example, the infix expression

a * ( b + c)

can be written in prefix form as

* a + b c

and in postfix form as 

a b c + *

7. In C, the increment and decrement unary operators ++ and -- can be written both in prefix

and in postfix notation. The semantics of the two forms, however, is different; that is,

they denote two distinct operators. 

8. Both  expressions  ++k  and  k++  have  the  side  effect  that  the  stored  value  of  k  is

incremented by one. In the former case, the value of the expression is the value of k

incremented by one (i.e., first, the stored value of k is incremented, and then the value of

k is provided as the value of the expression). 

9. In the latter case, the value of the expression is the value of k before being incremented.

Infix notation is the most natural one to use for binary operators, since it allows programs

to be written as conventional mathematical expressions. 

10. Although the programmer may use parentheses to explicitly group subexpressions that

must be evaluated first, programming languages complicate matters by introducing their

own conventions for operator associativity and precedence. 

11. Indeed, this is done to facilitate the programmer’s task of writing expressions by reducing

redundancy,  but  often  this  can  generate  confusion  and  make  expressions  less

understandable,  especially  when  switching  languages.  For  example,  the  convention

adopted by most languages is such that

a + b * c

is interpreted implicitly as
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a + (b * c)

i.e.,  multiplication has  precedence over  binary addition  (as  in  standard mathematics).

However, consider the Pascal expression

a = b < c

and the C expression

a == b < c

12. In Pascal, operators < and = have the same precedence, and the language specifies that

application of operators with the same precedence proceeds left to right. The meaning of

the above expression is that the result of the equality test ( a=b ), which is a boolean

value, is compared with the value of c (which must be a boolean variable). 

13. In Pascal, FALSE is assumed to be less than TRUE , so the expression yields TRUE only

if a is not equal to b, and c is TRUE ; it yelds FALSE in all other cases. For example, if a,

b and c are all FALSE , the expression yields FALSE .

14. In C, operator "less than" (<) has higher precedence than "equal" (==). Thus, first b < c is

evaluated.  Such partial result  is then compared for equality with the value of a .  For

example, assuming a = b = c = false (represented in C as zero), the evaluation of the

expression yields 1, which in C stands for true. 

15. Some languages,  like  C++ and Ada,  allow operators  to  be  programmer  defined.  For

example, having defined a new type Set , one can define the operators + for set union and

- for set difference. 

16. The ability of providing programmer-defined operators, as any other feature that is based

on overloading,  can in  some cases make programs easier  to  read,  and in other  cases

harder. Readability is improved since the programmer is allowed to use familiar standard

operators and the infix notation also for newly defined types. 

17. The effect of this feature, however, is such that several actions happen behind the scenes

when the program is processed. This is good whenever what happens behind the scenes

matches  the  programmer’s  intuition;  it  is  bad  whenever  the  effects  are  obscure  or

counterintuitive to the programmer. 

18. Some programming languages support the ability of writing conditional expressions, i.e.,

expressions that are composed of subexpressions, of which only one is to be evaluated,

depending on the value of a condition. For example, in C one can write
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(a > b) ? a : b

which would be written in a perhaps more conventionally understandable form in ML as

if a > b then a else b

to yield the maximum of the values of a and b .

19. ML allows  for  more  general  conditional  expressions  to  be  written  using  the  "case"

constructor, as shown by the following simple example.

case x of

1 => f1 (y)

| 2 => f2 (y)

| _ => g (y)

20. In the example, the value yielded by the expression is f1 (y) if x = 1 , f2 (y) if x =2 , g (y)

otherwise.

21. Functional programming languages are based heavily on expressions. In such languages,

a program is itself an expression, defined by a function applied to operands, which may

themselves be defined by functions applied to operands. 

22. Conventional languages, instead, make the values of expressions visible as a modification

of the computation’s state, through assignment of expressions to variables. An assignment

statement, like x = y + z in C, changes the state by associating a new r_value with x ,

computed as y + z . To evaluate the expression, the r_values of variables y and z are used.

23. The result of the expression (an r_value) is then assigned to a memory location by using

the  l_value  of  x  .  Since  the  assignment  changes  the  state  of  the  computation,  the

statement that executes next operates in the new state. 

24. Often, the next statement to be executed is the one that textually follows the one that just

completed  its  execution.  This  is  the  case  of  a  sequence  of  statements,  which  is

represented in C as

statement_1;

statement_2;

. . .

statement_n;
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25. The sequence can be made into a compound statement by enclosing it between the pair of

brackets { and }. In other languages, like Pascal and Ada, the keywords begin and end are

used instead of brackets. 

26. In  many  conventional  programming  languages,  like  Pascal,  the  distinction  between

assignment  statements  and  expressions  is  sharp.  In  others,  like  C,  an  assignment

statement is actually an expression with a side-effect. 

27. The value returned by an assignment statement is the one that is stored in the left operand

of the assignment operator "=". A typical example is given by the following loop which

reads successive input characters until the end of file is encountered:

while ((c = getchar ( )) != EOF)

/* assigns the character read to c and yields the read value, which is compared to the end

of file symbol */

. . .

28. Furthermore,  in  C the  assignment  operator  associates  from right  to  left.  That  is,  the

statement

a = b = c = 0;

is interpreted as

a = (b = (c = 0))

29. Many programing languages,  like Pascal,  require  the left-hand side of an assignment

operator to be a simple denotation for an l_value. 

30. For example, it can be a variable name, or an array element, or the cell pointed by some

variable.  More  generally,  other  languages,  like  C,  allow  any  expression  yielding  a

modifiable  l_value  to  appear  on  the  left-hand  side.  Thus,  it  is  possible  to  write  the

following kind of statement

( p > q) ? p* : q* = 0;

which sets to zero the element pointed by the maximum of p and q .

✔ Conditional execution and iteration: 

1. Conditional execution of different statements can be specified in most languages by the if

statement.  Languages differ in several important syntactic details  concerning the way

such a construct is offered. 
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2. Semantically, however, they are all alike.Let us start with the example of the if statement

as originally provided by Algol 60. Two forms are possible, as shown by the following

examples:

if i = 0

then i := j;                        if i = 0

then i := j

else begin

i := i + 1;

j := j - 1

end

3. In the first case, no alternative is specified for the case i ¦ 0 , and thus nothing happens if i

¦ 0 . In the latter, two alternatives are present. Since the case where i ¦ 0 is described by a

sequence, it must be made into a compound statement by bracketing it between begin and

end . 

4. The selection statement of Algol 60 raises a well-known ambiguity problem, illustrated

by the following example

if x > 0 then if x < 10 then x := 0 else x := 1000

5. It is unclear if the else alternative is part of the innermost conditional ( if x < 10. .) or the

outermost conditional ( if x > 0 . . . ). 

6. The execution of the above statement with x = 15 would assign 1000 to x under one

interpretation, but leave it unchanged under the other. To eliminate ambiguity, Algol 60

requires an unconditional statement in the then branch of an if statement. Thus the above

statement must be replaced by either

if x > 0 then begin if x < 10 then x := 0 else x := 1000 end

or

if x > 0 then begin if x < 10 then x := 0 end else x := 1000

7. The same problem is solved in C and Pascal by automatically matching an else branch to

the closest conditional without an else. 
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8. Even though this rule removes ambiguity, however, nested if statements are difficult to

read, especially if the program is written without careful indentation (as shown above). A

syntactic variation that avoids this problem is adopted by Algol 68, Ada, and Modula-2,

which use a special keyword as an enclosing final bracket of the if statement ( fi in the

case of Algol 68, end if in the case of Ada, end in the case of Modula-2). Thus, the above

examples would be coded in Modula-2 as

if i = 0

then i := j

else i := i + 1;

j := j - 1

end

and

if x > 0 then if x < 10 then x := 0 else x := 1000 end end

or

if x > 0 then if x < 10 then x := 0 end else x := 1000 end

depending on the desired interpretation.

9. Choosing among more than two alternatives using only if-then-else statements may lead

to awkward constructions, such as

if a

then S1

else

if b

then S2

else

if c

then S3

else S4

end

end

end
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10. To solve this syntactic inconvenience, Modula-2 has an else-if construct that also serves

as an end bracket for the previous if. Thus the above fragment may be written as

if a

then S1

else if b

then S2

else if c

then S3

else S4

end

11. C, Algol 68, and Ada provide similar abbreviations. Most languages also provide an ad-

hoc construct to express multiple-choice selection. For example, C++ provides the switch

construct, illustrated by the following fragment:

switch (operator) {

case ’+’:

result = operand1 + operand2;

break;

case ’*’:

result = operand1 * operand2;

break;

case ’-’:

result = operand1 - operand2;

break;

case ’/’:

result = operand1 / operand2;

break;

default:

break; --do nothing

};

12. Each branch is labelled by one (or more) constant values.  Based on the value of the

switch expression,  the branch labelled by the same valuenate each branch;  otherwise
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execution would fall into the next branch. The same example may be written in Ada as

case OPERATOR is

when ’+’ => result = operand1 + operand2;

when ’*’ => result = operand1 * operand2;

when ’-’ => result = operand1 - operand2;

when ’/’ => result = operand1 / operand2;

when others => null;

end case

13. In  Ada,  after  the  selected  branch  is  executed,  the  entire  case  statement  terminates.

Iteration allows a number of actions to be executed repeatedly.

14. Most  programming  languages  provide  different  kinds  of  loop  constructs  to  define

iteration of actions (called the loop body). Often, they distinguish between loops where

the number of repetitions is known at the start of the loop, and loops where the body is

executed repeatedly as long as a condition is met. 

15. The former kind of loop is usually called a for loop; the latter is often called the while

loop. For-loops are named after a common statement provided by languages of the Algol

family.  For  statements define a control  variable  which assumes all  values of a  given

predefined sequence, one after the other. For each value, the loop body is executed. 

16. Pascal  allows  iterations  where  control  variables  can  be  of  any  ordinal  type:  integer,

boolean, character, enumeration, or subranges of them. A loop has the following general

appearance:

for  loop_ctr_var  :=  lower_bound  to  upper_bound  do  statement  A  control  variable

assumes all of its values from the lower to the upper bound. The language prescribes that

the control variable and its lower and upper bounds must not be altered in the loop. 

17. The value of the control variable is also assumed to be undefined outside the loop. is

selected.  If  the value of  the switch expression does not  match any of the labels,  the

(optional) default branch is executed. If the default branch is not present, no action takes

place. 

18. The  order  in  which  the  branches  appear  in  the  text  isnate  each  branch;  otherwise

execution would fall into the next branch. The same example may be written in Ada as

case OPERATOR is
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when ’+’ => result = operand1 + operand2;

when ’*’ => result = operand1 * operand2;

when ’-’ => result = operand1 - operand2;

when ’/’ => result = operand1 / operand2;

when others => null;

end case

19. In  Ada,  after  the  selected  branch  is  executed,  the  entire  case  statement  terminates.

Iteration  allows  a  number  of  actions  to  be  executed  repeatedly.  Most  programming

languages provide different kinds of loop constructs to define iteration of actions (called

the loop body). 

20. Often, they distinguish between loops where the number of repetitions is known at the

start of the loop, and loops where the body is executed repeatedly as long as a condition

is met. The former kind of loop is usually called a for loop; the latter is often called the

while loop. 

21. For-loops  are  named  after  a  common  statement  provided  by  languages  of  the  Algol

family.  For  statements define a control  variable  which assumes all  values of a  given

predefined sequence, one after the other. For each value, the loop body is executed. 

22. Pascal  allows  iterations  where  control  variables  can  be  of  any  ordinal  type:  integer,

boolean, character, enumeration, or subranges of them. A loop has the following general

appearance:

for loop_ctr_var := lower_bound to upper_bound do statement

23. A control  variable  assumes all  of its  values from the lower to the upper bound. The

language prescribes that the control variable and its lower and upper bounds must not be

altered in the loop. The value of the control variable is also assumed to be undefined

outside the loop. Immaterial.

✔ Routines

1. Routines are a program decomposition mechanism which allows programs to be broken

into several units. Routine calls are control structures that govern the flow of control

among program units. 
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2. The relationships among routines defined by calls are asymmetric: the caller transfers

control to the callee by naming it explicitly. The callee transfers control back to the caller

without naming it. 

3. The unit to which control is transfered when a routine R terminates is always the one that

was executing immediately before R. Routines are used to define abstract operations.

Most modern languages allow such abstract operations to be defined recursively. 

4. Moreover, many such languages allow generic operations to be defined. Most languages

distinguish between two kinds of routines: procedures and functions. A procedure does

not return a value: it is an abstract command which is called to cause some desired state

change. 

5. The state may change because the value of some parameters transmitted to the procedure

gets  modified,  or  because  some nonlocal  variables  are  updated  by  the  procedure,  or

because  some  actions  are  performed  on  the  external  environment  (e.g.,  reading  or

writing). 

6. A function  corresponds  to  its  mathematical  counterpart:  its  activation  is  supposed  to

return a value, which depends on the value of the transmitted parameters. Pascal provides

both procedures and functions. 

7. It  allows  formal  parameters  to  be  either  by  value  or  by  reference.  It  also  allows

procedures  and functions  to  be parameters,  as  shown by the following example of  a

procedure header:

procedure example (var x: T; y: Q; function f (z: R): integer);

8. In the example, x is a by-reference parameter of type T ; y is a by-value parameter of type

Q ; f is a function parameter which takes one by-value parameter z of type R and returns

an integer. Ada provides both procedures and functions. 

9. Parameter passing mode is specified in the header of an Ada routine as either in , out , or

in out . If the mode is not specified, in is assumed by default. A formal in parameter is a

constant which only permits reading of the value of the corresponding actual parameter. 

10. A formal in out parameter is a variable and permits both reading and updating of the

value of the associated actual parameter. A formal out parameter is a variable and permits

updating of the value of the associated actual parameter. 
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11. In the implementation, parameters are passed either by copy or by reference. Except for

cases that are explicitly stated in the language standard, it is left to the implementation to

choose whether a parameter should be passed by reference or by copy. 

12. In C all routines are functional, i.e., they return a value, unless the return type is void ,

which states explicitly that no value is returned. Parameters can only be passed by value.

It  is  possible,  however,  to  achive  the  effect  of  call  by  reference  through  the  use  of

pointers. For example, the following routine

void proc (int* x, int y);

{

*x = *x + y;

}

increments the object referenced by x by the value of y . If we call proc as follows

proc (&a, b); /* &a means the address of a */

x is initialized to point to a , and the routine increments a by the value of b .

13. C++ introduced a way of directly specifying call by reference. This frees the programmer

from the lower level use of pointers to simulate call by reference. The previous example

would be written in C++ as follows.

void proc (int& x, int y);

{

x = x + y;

}

14. proc (a, b); -- no address operator is needed in the call While Pascal only allows routines

to be passed as parameters, C++ and Ada get closer to treating routines as first-class

objects. For example, they provide pointers to routines, and allow pointers to be bound

dynamically to different routines at run time.

✔ Style issues: side effects and aliasing:

1. Side effects are used principally to provide a method of communication among program

units. Communication can be established through nonlocal variables. However, if the set

of nonlocal variables used for this purpose is large and each unit has unrestricted access
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to the set of nonlocal variables, the program becomes difficult to read, understand, and

modify. 

2. Each  unit  can  potentially  reference  and  update  every  variable  in  the  nonlocal

environment, perhaps in ways not intended for the variable. The problem is that once a

global variable is used for communication, it is difficult to distinguish between desired

and undesired side effects. 

3. For example, if unit u1 calls u2 and u2 inadvertently modifies a nonlocal variable x used

for communication between units u3 and u4 , the invocation of u2 produces an undesired

side effect. Such errors are difficult to find and remove, because the symptoms are not

easily traced to the cause of the error. (Note that a simple typing error could lead to this

problem.) Another difficulty is that examination of the call  instruction alone does not

reveal the variables that can be affected by the call. 

4. This reduces the readability of programs because, in general, the entire program must be

scanned to  understand the  effect  of  a  call.  Communication  via  unrestricted  access  to

nonlocal variables is particularly dangerous when the program is large and composed of

several units that have been developed independently by several programmers. 

5. One  way  to  reduce  these  difficulties  is  to  use  parameters  as  the  only  means  of

communication among units. The overhead caused by parameter passing is almost always

tolerable, except for critical  applications whose response times must be within severe

bounds. 

6. Alternatively, it must be possible to restrict the set of nonlocal variables held in common

by two units to exactly those needed for the communication between the units. Also, it

can be useful to specify that a unit can only read, but not modify some variable. 

7. Side effects also are used in passing parameters by reference. In such a case, a side effect

is used to modify the actual parameter. The programmer must be careful not to produce

undesired side effects on actual parameters. 

8. The same problem arises with call by name. A more substantial source of obscurity in call

by  name  is  that  each  assignment  to  the  same  formal  parameter  can  affect  different

locations in the environment of the calling unit. 

9. Such problems do not arise in call by copy. Languages that distinguish between functions

and procedures suggest a programming style in which the use of side effects is restricted.
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Side effects are an acceptable programming practice for procedures. Indeed, this should

be the way a procedure sends results back to the caller. 

10. Side  effects,  however,  are  unadvisable  for  function  subprograms.  In  fact,  function

subprograms are invoked by writing the subprogram name within an expression, as in

v : = x+ f (x, y) + z

11. In the presence of side effects –in Pascal,  for example–the call  to f might produce a

change to x or y (if they are passed by reference), or even z (if z is global to the function)

as a side effect. This reduces the readability of the program, since a reader expects a

function to behave like a mathematical function. 

12. Also, one cannot rely on the commutativity of addition in general. In the example, if f

modifies x as a side effect, the value produced for w is different if x is evaluated before or

after calling f . Besides affecting readability, side effects can prevent the compiler from

generating optimized code for the evaluation of certain expressions. In the example

u: = x+ z+ f (x, y) + f (x, y) + x+ z

13. the compiler cannot evaluate function f and subexpression x+ z just once. The recognition

that side effects on parameters are undesirable for functions affected the design of Ada,

which allows only in formal parameters for functions. 

14. The disadvantages of aliasing affect programmers, readers, and language implementers.

Subprograms  can  become  hard  to  understand  because,  occasionally,  different  names

denote the same data object. 

15. This  problem  cannot  be  discovered  by  inspecting  the  subprogram:  rather,  discovery

requires examining all the units that may invoke the subprogram. As a consequence of

aliasing, a subprogram call may produce unexpected and incorrect results.

✔ Exceptions:

1. Programmers often write programs under the optimistic assumption that nothing will go

wrong  when  the  program  executes.  Unfortunately,  however,  there  are  many  reasons

which may invalidate this assumption. 

2. For example, it may happen that under certain conditions an array is indexed with a value

which exceeds the declared bounds. An arithmetic expression may cause a division by

zero, or the square root operation may be executed with a negative argument. 
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3. A request for new memory allocation issued by the run-time system might exceed the

amount  of  storage  available  for  the  program  execution.  Or,  finally,  an  embedded

application might receive a message from the field which overrides a previously received

message, before this message has been handled by the program. 

4. Often programs fail unexpectedly, maybe simply displaying some obscure message, as an

erroneous program state  is  entered.  This  behavior,  however,  is  unacceptable  in  many

cases.  To  improve  reliability,  it  is  necessary  that  such  erroneous  conditions  can  be

recognized by the program, and certain actions are executed in response to the error. 

5. To do so,  however,  the  conventional  control  structures  we have  discussed  so far  are

simply inadequate. For example, to check that an index never exceeds the array bounds,

one would need to explicitly test the value of the index before any indexing takes place,

and insert appropriate response code in case the bounds are violated. 

6. Alternatively, one would like the run-time machine to be able to trap such anomalous

condition, and let the response to it be programmable in the language. This would be

more efficient under the assumption that bound violations are the exceptional case. To

cope with this problem, programming languages provide features for exception handling.

According to the standard terminology, an exception denotes an undesirable, anomalous

behavior which supposedly occurs rarely. 

7. The language can provide facilities to define exceptions, recognize them, and specify the

response code that must be executed when the exception is raised (exception handler).

Exceptions have a wider meaning than merely computation errors. They refer to any kind

of anomalous behavior that, intuitively and informally, corresponds to a deviation from

the expected course of actions, as envisioned by the programmer. 

8. The concept of "deviation" cannot be stated in absolute and rigorous terms. It represents a

design decision taken by the programmer, who decides that certain states are "normal",

and "expected", while others are "anomalous". 

9. Thus,  an  exception  does  not  necessarily  mean  that  we  are  in  the  presence  of  a

catastrophic error. It simply means that the unit being executed is unable to proceed in a

manner that leads to its normal termination as specified by the programmer. For example,

consider a control system which processes input messages defined by a given protocol.
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✔ Exception handling in C++: 

1. Exceptions may be generated by the run-time environment (e.g.,  due to a division by

zero)  or may be explicitly  raised by the program. An exception is  raised by a  throw

instruction, which transfers an object to the corresponding handler. 

2. A handler may be attached to any piece of code (a block) which needs to be fault tolerant.

To do so, the block must be prefixed by the keyword try . As an example, consider the

following simple case: 

class  Help  {.  .  .  };  //  objects  of  this  class  have  a  public  attribute  "kind"  of  type

enumeration

     // which describes the kind of help requested, and other public fields

which

   // carry specific information about the point in the program where help

 // is requested

class Zerodivide { };  // assume that objects of this class are generated by the run-time

system

. . .

try {

          // fault tolerant block of instructions which may raise help or zerodivide exceptions

. . .

}

catch (Help msg) {

                  // handles a Help request brought by object msg

switch (msg.kind) {

case MSG1:

. . .;

case MSG2:

. . .;

. . .

}

. . .
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}

catch (Zerodivide) {

// handles a zerodivide situation

. . .

}

3. Suppose that the above try block contains the statement throw Help (MSG1); A throw

expression  causes  the  execution  of  the  block  to  be  abandoned,  and  control  to  be

transferred to the appropriate handler. 

4. It also initializes a temporary object of the type of the operand of throw and uses the

temporary to initialize the variable named in the handler. In the example, Help (MSG1)

actually invokes the constructor of class Help passing a parameter which is used by the

constructor to initialize field kind . 

5. The temporary object so created is used to initialize the formal parameter msg of the

matching catch , and control is then transferred to the first branch ( case MSG1 ) of the

switch in the first  handler attached to the block. The above block might call routines

which, in turn may raise exceptions.

6. If one such routine raises a–say–help request and does not provide a handler for it, the

routine’s execution is abandoned and the exception is  propagated to the point of call

within the block. Execution of the block, in turn, is abandoned, and control is transferred

to the handler as in the previous case. 

7. In other  terms,  C++,  like  Ada,  propagates  unhandled  exceptions.  Like  Ada,  a  caught

exception can be propagated explicitly, by simply saying throw . Also, as in Ada, after a

handler is executed, execution continues from the statement that follows the one to which

the matched handler is attached. 

8. Unlike Ada, any amount of information can flow along with an exception. To raise an

exception, in fact, one can throw an object, which contains data that can be used by the

handler. 

9. For  example,  in  the previous  example,  a  help request  was signalled by providing an

object which contained specific information on the kind of help requested. If the data in

the thrown object are not used by the handler, the catch statement can simply specify a

type, without naming an object. This happens in our example for the division by zero.
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