Class. SE Computer UNIT-IV Sub:PPL

INTRODUCTION TO JAVA

Unit Structure

1.1 Introduction

1.2 Basic concepts of OOPs

1.3 Java History

1.4 Java Feature

1.5 Comparison in Java and C++
1.6 Java Virtual Machine

1.7 Java Environment

1.8 Program

1.9 Summary

1.1 INTRODUCTION:

Java is a high-level, third generation programming language,
like C, FORTRAN, Smalltalk, Perl, and many others. You can use
Java to write computer applications that play games, store data or
do any of the thousands of other things computer software can do.
Compared to other programming languages, Java is most similar to
C. However although Java shares much of C's syntax, it is not C.
Knowing how to program in C or, better yet, C++, will certainly help
you to learn Java more quickly, but you don't need to know C to
learn Java. A Java compiler won't compile C code, and most large
C programs need to be changed substantially before they can
become Java programs. What's most special about Java in relation
to other programming languages is that it lets you write special
programs called applets that can be downloaded from the Internet
and played safely within a web browser. Java language is called as
an Object-Oriented Programming language and before begining for
Java, we have to learn the concept of OOPs(Object-Oriented
Programming).

1.2 BASIC CONCEPT OF OOPS (OBJECT-ORIENTED
PROGRAMMING):

There are some basic concepts of object oriented programming as
follows:

1. Object

2. Class

3. Data abstraction

Data encapsulation
Inheritance
Polymorphism
Dynamic binding

No oA

1. Object
Objects are important runtime entities in object oriented
method. They may characterize a location, a bank account, and a
table of data or any entry that the program must handle.
For example:

Object: STUDENT
DATA

Name
Address
Marks

METHODS

Total ()
Average ()

Fig.1.1 Representation of an object “STUDENT”

Each object holds data and code to operate the data. Object can
interact without having to identify the details of each other’s data or
code. It is sufficient to identify the type of message received and
the type of reply returned by the objects.

Another example of object is CAR

Object: CAR
DATA

Colour
Cost

METHODS

Lockilt ()
Drivelt ()

Fig.1.2 Representation of object “CAR”
Fig.1.1 and Fig.1.2 shows actual representation of object.
2. Classes

A class is a set of objects with similar properties (attributes),
common behaviour (operations), and common link to other objects.

7

The complete set of data and code of an object can be made a user
defined data type with the help of class.

The objects are variable of type class. A class is a collection
of objects of similar type. Classes are user defined data types and
work like the build in type of the programming language. Once the
class has been defined, we can make any number of objects
belonging to that class. Each object is related with the data of type
class with which they are formed.

As we learned that, the classification of objects into various
classes is based on its properties (States) and behaviour
(methods). Classes are used to distinguish are type of object from
another. The important thing about the class is to identify the
properties and procedures and applicability to its instances.

For example: Vehicle -
P Vehicle
Car
MH-01 1234
COST=4,00,000 COLOUR=Red

Fig.1.3 Representation of class

In above example, we will create an objects MH-01 1234
belonging to the class car. The objects develop their distinctiveness
from the difference in their attribute value and relationships to other
objects.

3. Data Abstraction

Data abstraction refers to the act of representing important
description without including the background details or
explanations.

Classes use the concept of abstraction and are defined as a
list of abstract attributes such as size, cost and functions operate
on these attributes. They summarize all the important properties of
the objects that are to be created.

8

Classes use the concepts of data abstraction and it is called as
Abstract Data Type (ADT).
4. Data Encapsulation

Data Encapsulation means wrapping of data and functions
into a single unit (i.e. class). It is most useful feature of class. The
data is not easy to get to the outside world and only those functions
which are enclosed in the class can access it.

These functions provide the boundary between Object’'s data

and program. This insulation of data from direct access by the
program is called as Data hiding.

For example:

Information in ——————| Data, process/Functions —
Information out

Fig 1.4: Encapsulation
5. Inheritance

Inheritance is the process by which objects of one class can
get the properties of objects of another class. Inheritance means
one class of objects inherits the data and behaviours from another
class. Inheritance maintains the hierarchical classification in which
a class inherits from its parents.

Inheritance provides the important feature of OOP that is
reusability. That means we can include additional characteristics to
an existing class without modification. This is possible deriving a
new class from existing one.

In other words, it is property of object-oriented systems that
allow objects to be built from other objects. Inheritance allows
openly taking help of the commonality of objects when constructing
new classes. Inheritance is a relationship between classes where
one class is the parent class of another (derived) class. The derived
class holds the properties and behaviour of base class in addition
to the properties and behaviour of derived class.

For Example: ;
P Vehicle

A

Santro Accent

Fig.1.5 Inheritance

In Fig.1.5, the Santro is a part of the class Hyundai which is again
part of the class car and car is the part of the class vehicle. That
means vehicle class is the parent class.

6. Polymorphism

(Poly means “many” and morph means “form”).
Polymorphism means the ability to take more than one form.
Polymorphism plays a main role in allocate objects having different
internal structures to share the same external interface. This means
that a general class of operations may be accessed in the same
manner even though specific activities associated with each
operation may differ. Polymorphism is broadly used in
implementing inheritance.

It means objects that can take on or assume many different
forms. Polymorphism means that the same operations may behave
differently on different classes. Booch defines polymorphism as the
relationship of objects many different classes by some common
super class. Polymorphism allows us to write generic, reusable
code more easily, because we can specify general instructions and
delegate the implementation detail to the objects involved.

For Example:

In a pay roll system, manager, office staff and production
worker objects all will respond to the compute payroll message, but
the real operations performed are object particular.

10

Shape

Draw()
Rectangle Object Square Object Circle Object
Draw (Rectangle) Draw (Square) Draw (Circle)

Fig.1.6 Polymorphism
7. Dynamic Binding

Binding refers to the linking of a procedure call to the code to be
executed in response to the call. Dynamic binding means that the
code related with a given procedure call is not known until the time
of the call at run time.

Dynamic binding is associated polymorphism and inheritance.

1.3 JAVA HISTORY :

Java is a general-purpose, object-oriented programming
language developed by Sun Microsystems of USA in
1991.0riginally called Oak by James Gosling (one of the inventor of
the language). Java was invented for the development of software
for cunsumer electronic devices like TVs, tosters, etc. The main aim
had to make java simple, portable and reliable.

Java Authors: James , Arthur Van , and others

Following table shows the year and beginning of Java.

Year Progress

1990 Sun decided to developed software that could be used
for electronic devices. And the project called as Green
Project head by James Gosling.

1991 Announcement of a new language named “Oak”

1992 The team verified the application of their new language
to manage a list of home appliances using a hand held
device.

1993 The World Wide Web appeared on the Internet and
transformed the text-based interface to a graphical rich
environment.

1994 The team developed a new Web browsed called “Hot

11

Java” to locate and run Applets.

1995 Oak was renamed to Java, as it did not survive “legal”
registration. Many companies such as Netscape and
Microsoft announced their support for Java.

1996 Java language is now famous for Internet
programming as well as a general purpose OO
language.

1997 Sun releases Java Development Kit(JDK 1.1)

1998 Sun releases Software Development Kit (SDK 1.2)

1999 Sun releases Java 2 platform Standard Edition (J2SE)
and Enterprise Edition(J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J2SE with SDK 1.4 was released.

2004 J2SE with JDK 5.0 was released.

1.4 JAVA FEATURES:

As we know that the Java is an object oriented programming

language developed by Sun Microsystems of USA in 1991. Java is
first programming language which is not attached with any
particular hardware or operating system. Program developed in
Java can be executed anywhere and on any system.

Features of Java are as follows:

1.

1. Compiled and Interpreted

© © N o o s~ wDd

Platform Independent and portable
Object- oriented

Robust and secure

Distributed

Familiar, simple and small
Multithreaded and Interactive

High performance

Dynamic and Extensible

Compiled and Interpreted

Basically a computer language is either compiled or
interpreted. Java comes together both these approach thus making
Java a two-stage system.

12

Java compiler translates Java code to Bytecode instructions
and Java Interpreter generate machine code that can be directly
executed by machine that is running the Java program.

2. Platform Independent and portable

Java supports the feature portability. Java programs can be
easily moved from one computer system to another and anywhere.
Changes and upgrades in operating systems, processors and
system resources will not force any alteration in Java programs.
This is reason why Java has become a trendy language for
programming on Internet which interconnects different kind of
systems worldwide. Java certifies portability in two ways.
First way is, Java compiler generates the bytecode and that can be
executed on any machine. Second way is, size of primitive data
types are machine independent.

3. Object- oriented
Java is truly object-oriented language. In Java, almost
everything is an Object. All program code and data exist in objects
and classes. Java comes with an extensive set of classes; organize
in packages that can be used in program by Inheritance. The object
model in Java is trouble-free and easy to enlarge.

4. Robust and secure
Java is a most strong language which provides many
securities to make certain reliable code. It is design as garbage —
collected language, which helps the programmers virtually from all
memory management problems. Java also includes the concept of
exception handling, which detain serious errors and reduces all
kind of threat of crashing the system.

Security is an important feature of Java and this is the strong
reason that programmer use this language for programming on
Internet.

The absence of pointers in Java ensures that programs
cannot get right of entry to memory location without proper
approval.

5. Distributed
Java is called as Distributed language for construct
applications on networks which can contribute both data and
programs. Java applications can open and access remote objects
on Internet easily. That means multiple programmers at multiple
remote locations to work together on single task.

6. Simple and small
Java is very small and simple language. Java does not use
pointer and header files, goto statements, etc. It eliminates operator
overloading and multiple inheritance.

13

7. Multithreaded and Interactive
Multithreaded means managing multiple tasks
simultaneously. Java maintains multithreaded programs. That
means we need not wait for the application to complete one task
before starting next task. This feature is helpful for graphic
applications.

8. High performance
Java performance is very extraordinary for an interpreted
language, majorly due to the use of intermediate bytecode. Java
architecture is also designed to reduce overheads during runtime.
The incorporation of multithreading improves the execution speed
of program.

9. Dynamic and Extensible
Java is also dynamic language. Java is capable of
dynamically linking in new class, libraries, methods and objects.
Java can also establish the type of class through the query building
it possible to either dynamically link or abort the program,
depending on the reply.

Java program is support functions written in other language
such as C and C++, known as native methods.

1.5 COMPARISON IN JAVA AND C++

Java C++

1 Java is true Object- | C++ is basically C with
oriented language. Object-oriented extension.

2 Java does not support | C++ supports operator
operator overloading. | overloading.

3 It supports labels with | It supports goto statement.
loops and statement
blocks

4 Java does not have | C++ has template classes.
template classes as in
C++.

5 Java compiled into | Source code can be written
byte code for the Java | to be platform independent
Virtual Machine. The |and written to take
source code Is | advantage of platform.C++
independent on | typically = compiled into
operating system. machine code.

14

6 Java does not support | C++ supports multiple
multiple inheritance of | inheritance of classes.
classes but it supports
interface.

7 Runs in a protected | Exposes low-level system
virtual machine. facilities.

8 Java does not support | C++ support global
global variable. Every | variable.
variable should
declare in class.

9 Java does not use | C++ uses pointer.
pointer.

10 |t Strictly enforces an|It Allows both procedural
object ~ oriented [programming and object-
programming oriented programming.
paradigm.

11 | There are no header | We have to use header file
files in Java. in C++,

1.6 JAVA VIRTUAL MACHINE:

As we know that all programming language compilers
convert the source code to machine code.Same job done by Java
Compiler to run a Java program, but the difference is that Java
compiler convert the source code into Intermediate code is called
as bytecode. This machine is called the Java Virtual machine and it
exits only inside the computer memory.

Following figure shows the process of compilation.

Java
Program

Source Code

R Java R Virtual
" Compiler - Machine
Byte Code

The Virtual machine code is not machine specific. The machine
specific code is generated. By Java interpreter by acting as an
intermediary between the virtual machine and real machines shown

below

15

Byte _ Java .| Machine code
Code Interpreter
Virtual machine Real Machine

Java Object Framework act as the intermediary between the
user programs and the virtual machine which in turn act as the
intermediary between the operating system and the Java Object
Framework.

Operating System TN

Java Virtual Machine

Java Object Framework >_

Compiler and Interpreter

User Application Programs

Fig: Layers of Interaction for Java programs

1.7 JAVA ENVIRONMENT:

Java environment includes a number of development tools,
classes and methods. The development tools are part of the
system known as Java Development Kit (JDK) and the classes and
methods are part of the Java Standard Library (JSL), also known as
the Application Programming Interface (API).

Java Development kit (JDK) — The JDK comes with a set of
tools that are used for developing and running Java program. It
includes:

Appletviewer(It is used for viewing the applet)
Javac(lt is a Java Compiler)

Java(ltis a java interpreter)

Javap(Java diassembler,which convert byte code into
program description)

Javah(lt is for java C header files)

Javadoc(lt is for creating HTML document)

Jdb(It is Java debugger)

RN s

No o

16

For compiling and running the program we have to use following
commands:

a)

b)

javac (Java compiler)

In java, we can use any text editor for writing program and
then save that program with “.java” extension. Java compiler
convert the source code or program in bytecode and
interpreter convert “.java” file in “.class” file.

Syntax:

C:\javac filename.java

If my filename is “abc.java” then the syntax will be
C:\javac abc.java

java(Java Interpreter)

As we learn that, we can use any text editor for writing
program and then save that program with “.java” extension.
Java compiler convert the source code or program in
bytecode and interpreter convert “.java” file in “.class” file.
Syntax:

C:\java filename

If my filename is abc.java then the syntax will be

C:\java abc

1.8 SIMPLE JAVA PROGRAM:

class FirstProgram

{
public static void main(String args|])
{
System.out.println (“This is my first program”);
}
}

The file must be named “FirstProgram.java” to equivalent the
class name containing the main method.

Java is case sensitive. This program defines a class called
“FirstProgram”.

A class is an object oriented term. It is designed to perform a
specific task. A Java class is defined by its class name, an
open curly brace, a list of methods and fields, and a close
curly brace.

The name of the class is made of alphabetical characters
and digits without spaces, the first character must be
alphabetical.

17

e The line “public static void main (String [] args)" shows
where the program will start running. The word main means
that this is the main method —

The JVM starts running any program by executing this
method first.

e The main method in “FirstProgram.java”’ consists of a single
statement System.out. println ("This is my first program™);

e The statement outputs the character between quotes to the
console.

Above explanation is about how to write program and now
we have to learn where to write program and how to compile
and run the program.

For this reason, the next explanation is showing the steps.

Edit the program by the use of Notepad.
Save the program to the hard disk.
Compile the program with the javac command.(Java compiler)

If there are syntax errors, go back to Notepad and edit the
program.

Run the program with the java command.(Java Interpreter)

6. If it does not run correctly, go back to Notepad and edit the
program.

7. When it shows result then stop.

NP

o

1.9 SUMMARY :

In this unit, we learn the concept of Object Oriented
Programming, Introduction of Java, History of Java, Features of
Java, Comparison between C++ and Java, Java virtual Machine
and Java Environment.

Questions and Answers:

Q.1) Explain the concept of OOPs.

Ans: refer 1.2

Q.2) Explain JVM?

Ans: refer 1.6

Q.3)Explain the features of JAVA?

Ans: refer 1.4

Q.4) Explain Difference between C++ and JAVA?
Ans: refer 1.5

18

DATA TYPES, VARIABLES AND
CONSTANTS

Unit Structure

2.1 Datatypes
2.1.1 Integer data type
2.1.2 Floating point data type
2.1.3 Character data type
2.1.4 Boolean data type

2.2 Mixing Data types

2.3 Variables
2.3.1 Variable name

2.4 Constants
2.4.1 Integer Constant
2.4.2 Real Constant
2.4.3 Character Constant
2.4.4 String Constant
2.4.5 Symbolic constant
2.4.6 Backslash character constant

2.5 Comments

2.6 Command line arguments

2.7 Summary

2.8 Questions

2.1 DATATYPES:

e A data type is a scheme for representing values. An
example is int which is the Integer, a data type.

e Values are not just numbers, but any manner of data that a
computer can process.

e The data type defines the kind of data that is represented by
a variable.

e As with the keyword class, Java data types are case
sensitive.

19

There are two types of data types
e primitive data type
e non-pimitive data type

In primitive data types, there are two categories
e numeric means Integer, Floating points
¢ Non-numeric means Character and Boolean

In non-pimitive types, there are three categories
e classes
e arrays
e interface
[]

Following table shows the datatypes with their size and ranges.

Data type Size (byte) Range

byte 1 -128 to 127

boolean 1 True or false

char 2 A-Z,a-z,0-9,etc.

short 2 -32768 to 32767

Int 4 (about) -2 million to 2 million
long 8 (about) -10E18 to 10E18
float 4 -3.4E38 to 3.4E18

double 8 -1.7E308 to 1.7E308

Fig: Datatypes with size and range

2.1.1 Integer datatype:

Integer datatype can hold the numbers (the number can be
positive number or negative number). In Java, there are four
types of integer as follows:

byte

short

int

long

We can make ineger long by adding ‘I' or ‘L’ at the end of the
number.

2.1.2 Floating point data type:
It is also called as Real number and when we require
accuracy then we can use it.
There are two types of floating point data type.
o float
e double

It is represent single and double precision numbers. The
float type is used for single precision and it uses 4 bytes for storage

20

space. It is very useful when we require accuracy with small degree
of precision. But in double type, it is used for double precision and
uses 8 bytes of starage space. It is useful for large degree of
precision.

2.1.3 Character data type:
It is used to store single character in memory. It uses 2 bytes
storage space.

2.1.4 Boolean data type:

It is used when we want to test a particular condition during
the excution of the program. There are only two values that a
boolean type can hold: true and false.
Boolean type is denoted by the keyword boolean and uses only one
bit of storage.

Following program shows the use of datatypes.
Program:

import java.io.DatalnputStream;

class cc2

{

public static void main(String args[]) throws Exception

{

DatalnputStream s1=new DatalnputStream(System.in);
byte rollno;

int marksl,marks2,markss3;

float avg;

System.out.printin("Enter roll number:");
rollno=Byte.parseByte(s1.readLine());

System.out.printin("Enter marks m1, m2,m3:");
marksl=Integer.parselnt(sl.readLine());
marks2=Integer.parselnt(sl.readLine());
marks3=Integer.parselnt(sl.readLine());

avg = (marksl+marks2+marks3)/3;

System.out.printin("Roll number is="+rollno);
System.out.printin("Average is="+avg);
}

}

Output:

C:\cc>java cc2

Enter roll number:

07

Enter marks m1, m2,m3:
66

21

77
88
Roll number is=7
Average is=77.0

2.2 MIXING DATA TYPES:

Java allows mixing of constants and variables of different
types in an expression, but during assessment it hold to very strict
rules of type conversion.

When computer consider operand and operator and if
operands are different types then type is automatically convert in
higher type.

Following table shows the automatic type conversion.

char |byte |short |int long |float |doubl
e
Char int int int int long float double
Byte int int int int long float double
Short |int int int int long float double
Int int int int int long float double

Long |long long long long long float double

Float float float float float float float double

doubl | doubl | doubl | doubl |doubl | doubl | doubl | double
e e e e e e e

2.3 VARIABLES:

Variables are labels that express a particular position in
memory and connect it with a data type.

The first way to declare a variable: This specifies its data
type, and reserves memory for it. It assigns zero to primitive types
and null to objects.

dataType variableName,;

The second way to declare a variable: This specifies its data
type, reserves memory for it, and puts an initial value into that
memory. The initial
value must be of the correct data type.

dataType variableName = initialValue;

The first way to declare two variables: all of the same data
type, reserves memory for each.

22

dataType variableNameOne, variableNameTwo;

The second way to declare two variables: both of the same
data type, reserves memory, and puts an initial value in each
variable.

dataType variableNamel = initialValuel,
variableNamell=initialValuell,

2.3.1 Variable name:
e Use only the characters ‘a’ through ‘z’, ‘A’ through ‘Z’, ‘0’
through ‘9’, character ‘', and character ‘$'.
A name cannot include the space character.
Do not begin with a digit.
A name can be of any realistic length.
Upper and lower case count as different characters.
A name cannot be a reserved word (keyword).
A name must not previously be in utilized in this block of the
program.

2.4 CONSTANT :

Constant means fixed value which is not change at the time
of execution of program. In Java, there are two types of constant as
follows:

e Numeric Constants
= [nteger constant
= Real constant
e Character Constants
» Character constant
= String constant

2.4.1 Integer Constant:
An Integer constant refers to a series of digits. There are
three types of integer as follows:
a) Decimal integer
Embedded spaces, commas and characters are not alloed in
between digits.
For example:
23411
7,00,000
17.33

b) Octal integer
It allows us any sequence of numbers or digits from O to 7

with leading O and it is called as Octal integer.

23
For example:
011
00
0425

c) Hexadecimal integer

It allows the sequence which is preceded by 0X or Ox and it also
allows alphabets from ‘A’ to ‘F’ or ‘a’ to ‘' ('A’ to ‘F’ stands for
the numbers ‘10’ to ‘15’) it is called as Hexadecimal integer.

For example:

Ox7

00X

0A2B

2.4.2 Real Constant

It allows us fractional data and it is also called as folating point
constant.

It is used for percentage, height and so on.

For example:

0.0234

0.777

-1.23

2.4.3 Character Constant

It allows us single character within pair of single coute.
For example:

N

e

i\l

2.4.4 String Constant

It allows us the series of characters within pair of double coute.
For example:

“WELCOME”

“END OF PROGRAM”

“BYE ...BYE”

“A

2.4.5 Symbolic constant:

In Java program, there are many things which is requires
repeatedly and if we want to make changes then we have to make
these changes in whole program where this variable is used. For
this purpose, Java provides ‘final’ keyword to declare the value of
variable as follows:

Syntax:

final type Symbolic_name=value;

24

For example:
If | want to declare the value of ‘PI’ then:

final float P1=3.1459

the condition is, Symbolic_name will be in capital letter(it shows
the difference between normal variable and symblic name) and do
not declare in method.

2.4.6 Backslash character constant:
Java support some special character constant which are given in
following table.

Constant | Importance
\b’ Back space
\t Tab

n’ New line

AV Backslash

\” Single coute
\” Double coute

2.5 Comments:

A comment is a note written to a human reader of a
program. The program compiles and runs exactly the same with or
without comments. Comments start with the two characters “//”
(slash slash). Those characters and everything that follows them on
the same line are ignored by the java compiler. everything between
the two characters “/*"and the two characters “*/” are unobserved
by the compiler. There can be many lines of comments between
the “/*” and the “*/".

2.6 COMMAND LINE ARGUMENTS:

Command line arguments are parameters that are supplied
to the application program at the time of invoking its execution.
They must be supplied at the time of its execution following the file
name.

In the main () method, the args is confirmed as an array of
string known as string objects. Any argument provided in the
command line at the time of program execution, are accepted to the
array args as its elements. Using index or subscripted entry can
access the individual elements of an array. The number of element
in the array args can be getting with the length parameter.

25

For example:
class Add
{

public static void main(String argsl[])
{

int a=Integer.parselnt(args[0]);

int b=Integer.parselnt(args[1]);

int c=a+b;
System.out.printin(“*Addition is="+c);
}
}
output:
c:\javac Add.java

c:\java Add 5 2
7

2.7 SUMMARY:

In this unit, we learn the concept of dtata types, variable and
constants with example. In constants, we gain knowledge of back
slash character constant. Additionaly we study the concept of
command line argument and comments which is also essential for

us.

2.8 QUESTION:

1. Explain types of Datatypes with example?

Ans: refer 2.1
2. Explain Constants with example?

Ans: refer 2.4

26

TOKENS IN JAVA

Unit Structure
3.1 Introduction
3.2 Tokens in Java

3.2.1 Identifiers

3.2.2 Litrals

3.2.3 Keywords
3.2.4 Operator

3.24.1
3.24.2
3.24.3
3.24.4
3.2.4.5
3.2.4.6
3.2.4.7

Arithmetic operators

Logical operators

Relational operators

Assignment operators

Conditional operators

Increment and decrement operators
Bit-wise operator

3.2.5 Separators
3.3 Operator Precedence in Java

3.4 Summary

3.1 INTRODUCTION:

A Java program is basically a set of classes. A class is
defined by a set of declaration statements and methods or
functions. Most statements contain expressions, which express the
actions carried out on information or data. Smallest indivisual thing
in a program are known as tokens. The compiler recognizes them

for building up expression and statements.

3.2 TOKENS IN JAVA:

There are five types of token as follows:

Literals
Identifiers
Operators
Separators

PwnhE

27

3.2.1 Literals:

Literals in Java are a sequence of characters (digits, letters
and other characters) that characterize constant values to be stored
in variables. Java language specifies five major types of literals are
as follows:

Integer literals
Floating point literals
Character literals
String literals
Boolean literals

arnNE

3.2.2 Identifiers:

Identifiers are programmer-created tokens. They are used
for naming classes, methods, variables, objects, labels, packages
and interfaces in a program. Java identifiers follow the following
rules:

1. They can have alphabets, digits, and the underscore and
dollar sign characters.

2. They must not start with a digit.

3. Uppercase and lowercase letters are individual.

4. They can be of any length.

Identifier must be meaningful, easily understandable and
descriptive.

For example:

Private and local variables like “length”.

Name of public methods and instance variables begin with
lowercase letter like “addition”

3.2.3 Keywords:

Keywords are important part of Java. Java language has
reserved 50 words as keywords. Keywords have specific meaning
in Java. We cannot use them as variable, classes and method.
Following table shows keywords.

abstract char catch boolean
default finally do implements
if long throw private
package static break double

this volatile import protected
class throws byte else

float final public transient
native instanceof case extends

int null const new

return try for switch

28

interface void while synchronized
short continue goto super
assert const

3.2.4 Operator:

Java carries a broad range of operators. An operator is
symbols that specify operation to be performed may be certain
mathematical and logical operation. Operators are used in
programs to operate data and variables. They frequently form a
part of mathematical or logical expressions.

Categories of operators are as follows:

Arithmetic operators

Logical operators

Relational operators

Assignment operators

Conditional operators

Increment and decrement operators
Bit wise operators

Noohs~wbE

3.2.4.1 Arithmetic operators:

Arithmetic operators are used to make mathematical
expressions and the working out as same in algebra. Java provides
the fundamental arithmetic operators. These can operate on built in
data type of Java.

Following table shows the details of operators.

Operator Importance/ significance

+ Addition

- Subtraction

/ Division

* Multiplication

% Modulo division or remainder

Now the following programs show the use of arithmetic operators.
“+” operator in Java:

In this program, we have to add two integer numbers and display
the result.

class AdditionInt

{

public static void main (String argsl])

{

inta=6;

29
intb=3;

System.out.printin("a =" + a);
System.out.printin("b =" + b);

intc=a+Db;
System.out.printin("Addition =" + c);

}
}

Output:
a==6

b=3
Addition=9

“-" operator in Java:

class SubstractionInt

{

public static void main (String argsl])

{

inta=6;
intb=3;

System.out.printin("a =" + a);
System.out.printin("b =" + b);

intc=a-b;

System.out.printin("Subtraction=" + c);

}

}
Output:

a=6
b=3
Subtraction=3

“*” operator in Java:

Class Multiplicationint

{

public static void main (String argsl])

{

inta=6;
intb=3;

System.out.printin("a =" + a);

30

System.out.printin("b =" + b);

intc=a*b;
System.out.printin("Multiplication=" + c¢);
}
}
Output:
a=6
b=3

Multiplication=18
“/” operator in Java:

Class DivisionInt

{

public static void main (String argsl])

{

inta=6;
intb=3;

System.out.printin("a =" + a);
System.out.printin("b =" + b);

c=alb;
System.out.printin("division=" + c);
}

}
Output:

a=6
b=3
Division=3

Remainder or modulus operator (%) in Java:

Class Remainderoptr

{

public static void main (String argsl])

{

inta=6;
intb=3;

System.out.printin("a =" + a);
System.out.printin("b =" + b);

c=a%b;
System.out.printin("remainder=" + c);

31

Output:

a=6

b=3
Remainder= 0

e When both operands in the expression are integers then the
expression is called Integer expression and the opration is
called Integer arithmetic.

e When both operands in the expression are real then the
expression is called Real expression and the opration is
called Real arithmetic.

e When one operand in the expression is integer and other is
float then the expression is called Mixed Mode Arithmetic
expression and the opration is called Mixed Mode Arithmetic
operation.

As we learn the Arithmetic operation on integer data and
store data in integer variable. But the following program shows the
use of operators with integer data and store data in float variable.

Program: write a program to calculate average of three numbers.

class Avgl

{

public static void main(String args[])
{
int a=3;
int b=3;
int c=4;
int avg;
avg=at+b+c;
avg=avg/3;
System.out.printin(“*Avg of three numbers="+avQg);
}
}

Output:
Avg of three numbers=3

3.2.4.2 Logical operators:

When we want to form compound conditions by combining
two or more relations, then we can use logical operators.
Following table shows the details of operators.

Operators | Importance/ significance
[Logical — OR
&& Logical —AND
! Logical -NOT

32
The logical expression defer a value of true or false.

Following table shows the truth table of Logical — OR and Logical —
AND.

Truth table for Logical — OR operator:

Operandl | Operand3 | Operandl || Operand3
T T T
T F T
F T T
F F F
T - True
F - False

Truth table for Logical — AND operator:

Operandl | Operand3 | Operandl && Operand3
T T T
T F F
F T F
F F F
T —True
F — False

Now the following program shows the use of Logical operators.
class LogicalOptr

{

public static void main (String args|])

{

boolean a = true;
boolean b = false;

System.out.printin("al|b =" +(a||b));
System.out.printin("a&&b = "+(a&&b));
System.out.printin("al = "+(!a));
}
}

Output:

al|b = true
a&&b = false
al = false

33

3.2.4.3 Relational Operators:

When evaluation of two numbers is performed depending
upon their relation, assured decisions are made.
The value of relational expression is either true or false.

If A=7 and A < 10 is true while 10 < A is false.

Following table shows the details of operators.

Operator Importance/ significance
> Greater than
< Less than
I= Not equal to
>= Greater than or equal to
<= Less than or equal to

Now, following examples show the actual use of operators.
1) If 10 > 30 then result is false
2) 140> 17 thenresultis true
3) 1f10>=300 then result is false
4) If 10 <= 10 then resultis true

Now the following program shows the use of operators.
(1) Program 1:
class Reloptrl

{

public static void main (String argsl])
{

inta=10;

int b = 30;

System.out.printin("a>b =" +(a>b));
System.out.printin("a<b = "+(a<b));
System.out.printin("a<=b = "+(a<=b));
}
}

Output:
a>b = false
a<b = true
a<=b = true

(2) Program 3
class Reloptr3

{

public static void main (String args]])

{

34

int a = 10;
int b = 30;
int ¢c = 30;
System.out.printin("a>b = " +(a>b));
System.out.printin("a<b = "+(a<b));

System.out.printin("a<=c = "+(a<=c));
System.out.printin("c>b = " +(c>b));
System.out.printin("a<c = "+(a<c));
System.out.printin("b<=c = "+(b<=c));

}

}
Output:
a>b = false
a<b = true
a<=c = true
c>b = true
a<c = true
b<=c = true

3.2.4.4 Assignment Operators:

Assignment Operators is used to assign the value of an
expression to a variable and is also called as Shorthand operators.

Variable_name binary_operator = expression

Following table show the use of assignment operators.

Simple Assignment | Statement with shorthand
Operator Operators

A=A+1 A+=1

A=A-1 A-=1

A=A/(B+1) A/=(B+1)

A=A*(B+1) A*=(B+1)

A=A/C A/=C

A=A%C A%=C

These operators avoid repetition, easier to read and write.

Now the following program shows the use of operators.

class Assoptr

{

public static void main (String args|])

{

35

inta=10;
int b = 30;
int c = 30;
a+=1;
b-=3;
c*=7;

System.out.printin("a =" +a);
System.out.printin("b = "+b);
System.out.printin("c = "+c);

}
}

Output:
a=11
b=18
c =310

3.2.4.5 Conditional Operators:
The character pair ?: is a ternary operator of Java, which
is used to construct conditional expressions of the following form:

Expressionl ? Expression3 : Expression3

The operator ? : works as follows:
Expressionl is evaluated if it is true then Expression3 is
evaluated and becomes the value of the conditional
expression. If Expressionl is false then Expression3 is
evaluated and its value becomes the conditional expression.

For example:
A=3;

B=4,
C=(A<B)?A:B;
C=(3<4)?3:4;
C=4

Now the following program shows the use of operators.

class Coptr

{

public static void main (String argsl])

{

inta = 10;

int b = 30;

int c;
c=(a>b)?a:b;
System.out.printin("c =" +c);

36

c=(a<b)?a:b;
System.out.printin("c =" +c);

}
}

Output:
c=30
c=10

program3: Write a program to check whether number is positive or
negative.

class PosNeg

{
public static void main(String args|])
{
int a=10;
int flag=(a<0)?0:1;
if(flag==1)
System.out.printin(*Number is positive”);
else
System.out.printin(*Number is negative”);
}
}
Output:

Number is positive

3.2.4.6 Increment and Decrement Operators:

The increment operator ++ adds 1 to a variable. Usually the
variable is an integer type, but it can be a floating point type. The
two plus signs must not be split by any character. Usually they are
written immediately next to the variable.

Following table shows the use of operators.

Expression Process Example end result

A++ Add 1 to a variable | int A=10,B; A=11
after use. B=A++; B=10

++A Add 1 to a variable | int A=10,B; A=11
before use. B=++A; B=11

A-- Subtract 1 from a |int A=10,B; A=9
variable after use. B=A--; B=10

--A Subtract 1 from a|int A=10,B; A=9
variable before use. | B=--A; B=9

37

Now the following program shows the use of operators.

class IncDecOp

{

public static void main(String args|])
{

int x=1,;

int y=3;

int u;

int z;

u=++y,

Z=X++;
System.out.printin(x);
System.out.printin(y);
System.out.println(u);
System.out.printin(z);

}
}

Output:
3
4
4
1

3.2.4.7 Bit Wise Operators:

Bit wise operator execute single bit of their operands.
Following table shows bit wise operator:

Operator Importance/ significance
| Bitwise OR

& Bitwise AND

&= Bitwise AND assignment
= Bitwise OR assignment

N Bitwise Exclusive OR

<< Left shift

>> Right shift

~ One’s complement

Now the following program shows the use of operators.
(1) Program 1

class Boptrl

{

public static void main (String argsl])

{
inta=4;
int b = a<<3;

38

System.out.printin("a =" +a);
System.out.printin("b =" +b);

}
}

Output:
a=4
b =16

(2) Program 3

Class Boptr3
{

public static void main (String args]])
{
inta=16;
intb = a>>3;
System.out.printin("a =" +a);
System.out.printin("b =" +b);
}
}

Output:
a=16
b=3

(Please refer following table)

356 138 64 33 16

3° 3’ 3° 3° 3

33

33

31

30

3.2.5 Separator:

Separators are symbols. It shows the separated code.they

describe function of our code.

Name use

0

Parameter in method definition, containing statements
for conditions,etc.

{}

It is used for define a code for method and classes

I

It is used for declaration of array

It is used to show the separate statement

It is used to show the separation in identifier in variable
declarartion

It is used to show the separate package name from sub-
packages and classes, separate variable and method
from reference variable.

39

3.3 OPERATOR PRECEDENCE IN JAVA:

An arithmetic expression without any parentheses will be
calculated from left to right using the rules of precedence of
operators.

There are two priority levels of arithmetic operators are as follows:
(@) High priority (* / %)
(b) Low priority (+ -)

The evaluation process includes two left to right passes
through the expression. During the first pass, the high priority
operators are applied as they are encountered.

During the second pass, the low priority operators are applied as
they are encountered.

For example:
Z=A-B/3+C*3-1
When A=10, B=13, C=3

First pass:

Z=10-(13/3) + (3*3)-1

Z=10-4+3-1

Second pass:

Z=6+3-1

z=7

Answer is=7

Following table shows associativity of operators.
Operator Associativity Rank
[] Left to right 1
() Left to right

. Left to right

- Right to left

++ Right to left 3
-- Right to left

! Right to left

~ Right to left

(type) Right to left

* Left to right

/ Left to right 3
% Left to right

+ Left to right 4
- Left to right

<< Left to right

>> Left to right 3)
>>> Left to right

40

< Left to right

<= Left to right

> Left to right 6
>= Left to right

Instanceof Left to right

== Left to right 7
I= Left to right

& Left to right 8
N Left to right 9

| Left to right 10
&& Left to right 11
[l Left to right 13
?. Right to left 13
= Right to left 14
3.4 SUMMARY:

In this unit, we learn the cocept of tokens in java.There are

4 types of tokens as we learn:

1. Literals
2. ldentifiers
3. Operators

Types of operators are:

N ogokrwnpE

We learn these operators with example.

4. separator

Arithmetic operators
Logical operators
Relational operators
Assignment operators
Conditional operators
Increment and decrement operators

Bit wise operator

41

CONTROL STRUCTURE

Unit Structure

4.1 Introduction
4.2 Control structure
4.2.1 Selection Statement
42.1.1 if statement
4.2.1.1.1 Simple if statement
4.2.1.1.2 The if...else statement
4.2.1.1.3 Nesting of if-else statement
42.1.2 switch statement
4.2.2 lteration Statement
4.2.2.1 for loop
4.2.2.2 while loop
4.2.2.3 do-while loop
4.2.3 Jump in Statement
4.3 Summary

4.1 INTRODUCTION:

In Java, program is a set of statements and which are
executed sequentially in order in which they appear. In that
statements, some calculation have need of executing with some
conditions and for that we have to provide control to that
statements. In other words, Control statements are used to provide
the flow of execution with condition.

In this unit, we will learn the control structure in detail.

4.2 CONTROL STRUCTURE:

In java program, control structure is can divide in three parts:

e Selection statement
e lteration statement
e Jumps in statement

4.2.1 Selection Statement:

Selection statement is also called as Decision making
statements because it provides the decision making capabilities to
the statements.

42
In selection statement, there are two types:

e |f statement
e switch statement

These two statements are allows you to control the flow of a
program with their conditions.

4.2.1.1 if Statement:

The “if statement” is also called as conditional branch
statement. It is used to program execution through two paths. The
syntax of “if statement” is as follows:

Syntax:
if (condition)
{

Statement 1;
Statement 2;

else

{

Statement 3;

Statement 4;

The “if statement” is a commanding decision making statement and
is used to manage the flow of execution of statements. The “if
statement” is the simplest one in decision statements. Above
syntax is shows two ways decision statement and is used in
combination with statements.

43

Following figure shows the “if statement”

AN

Condition
? true

False
4.2.1.1.1 Simple if statement:
Syntax:

If (condition)

{

Statement block;
}

Statement-a;

In statement block, there may be single statement or multiple
statements. If the condition is true then statement block will be
executed. If the condition is false then statement block will omit and
statement-a will be executed.

44

Following figure shows the flow of statement.

false
Condition?

' N

True

Statement Block

v

Statement ‘a’

l

42.1.1.2 The if...else statement:

Syntax:
If (condition)

{

True - Statement block;

else

False - Statement block;

45
Statement-a;

If the condition is true then True - statement block will be executed.
If the condition is false then False - statement block will be
executed. In both cases the statement-a will always executed.

Following figure shows the flow of statement.

Condition?

A 4

True — False —
Statement Statement
Block Block

A 4

Statement ‘@’

Following program shows the use of if statement.

Program: write a program to check whether the number is positive
or negative.

import java.io.*;
class NumTest

{

public static void main (String[] args) throws IOException
{

int Result=11,

System.out.printin("Number is"+Result);

if (Result<0)

}
Output:

46

System.out.printin("The number "+ Result +" is negative");

}
else
{
System.out.printin("The number "+ Result +" is positive");
}
System.out.printin("------- oo ");

}

C:\MCA>java NumTest

Number is 11

The number 11 is positive

(All conditional statements in Java require boolean values, and
that's what the ==, <, >, <=, and >= operators all return. A boolean
is a value that is either true or false. If you need to set a boolean

variable

in a Java program, you have to use the constants true and

false. Boolean values are no more integers than are strings).

For example: write a program to check whether the number is
divisible by 2 or not.

import java.io.*;

class divisorDemo

{

public static void main(String[] args)

{

inta=11;

if(a%2==0)

a7

{
System.out.printin(a +" is divisible by 2");
}
else
{
System.out.printin(a+" is not divisible by 2");
}
}
}
Output:

C:\MCA>java divisorDemo

11 is not divisible by 2

4.2.1.1.3 Nesting of if-else statement:
Syntax:

if (conditionl)

{
If(condition2)
{
Statement blockl;
}
else
{
Statement block2;
}
}

else

48

Statement block3;

Statement 4:

If the conditionl is true then it will be goes for condition2. If
the condition2 is true then statement blockl will be executed
otherwise statement2 will be executed. If the conditionl is false
then statement block3 will be executed. In both cases the
statement4 will always executed.

false

v \ 4

Statement3 Statement2

Statement4

'

For example: Write a program to find out greatest number from
three numbers.

class greatest

{

public static void main (String args[])
{
int a=10;

int b=20;

49
int c=3;

if(a>b)

{

if(a>c)

{

System.out.printin("a is greater number");

else

System.out.printin("c is greater number");

else

if(c>b)
{

System.out.printin("c is greater number");

System.out.printin("b is greater number");

}
Output:
C:\MCA>java greatest

b is greater number

50
4.2.1.2 switch statement:

In Java, switch statement check the value of given variable
or statement against a list of case values and when the match is
found a statement-block of that case is executed. Switch statement
is also called as multiway decision statement.

Syntax:

switch(condition)// condition means case value

{
case value-1:statement blockl;break;
case value-2:statement block2;break;
case value-3:statement block3;break;
default:statement block-default;break;
}

statement a;

The condition is byte, short, character or an integer. value-
1,value-2,value-3,...are constant and is called as labels. Each of
these values be matchless or unique with the statement. Statement
blockl, Statement block2, Statement block3,..are list of statements
which contain one statement or more than one statements. Case
label is always end with “:” (colon).

Program: write a program for bank account to perform following
operations.

-Check balance
-withdraw amount

-deposit amount

For example:
import java.io.*;
class bankac

{

public static void main(String args[]) throws Exception

51
{
int bal=20000;
int ch=Integer.parselnt(args[0]);
System.out.printin("Menu");
System.out.printin("1:check balance");

System.out.printin("2:withdraw amount... plz enter choice
and amount");

System.out.printin("3:deposit amount... plz enter choice
and amount");

System.out.printIn("4:exit");
switch(ch)
{
case 1:System.out.printin("Balance is:"+bal);

break;

case 2:int w=Integer.parselnt(args[1]);
if(w>bal)
{
System.out.printin("Not sufficient balance");
}
bal=bal-w;
System.out.printin("Balance is"+bal);
break;
case 3:int d=Integer.parselnt(args[1]);
bal=bal+d;
System.out.printin("Balance is"+bal);

break;

52

default:break;

}
Output:

C:\MCA>javac bankac.java

C:\MCA>java bankac 1

Menu

1:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit

Balance is:20000

C:\MCA>java bankac 2 2000

Menu

1:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit

Balance is18000

C:\MCA>java bankac 3 2000
Menu
1:check balance

2:withdraw amount... plz enter choice and amount

53
3:deposit amount... plz enter choice and amount
4:exit

Balance is22000

C:\MCA>java bankac 4

Menu

1:check balance

2:withdraw amount... plz enter choice and amount
3:deposit amount... plz enter choice and amount
4:exit

C:\MCA>java bankac

4.2.2 lteration Statement:

The process of repeatedly executing a statements and is
called as looping. The statements may be executed multiple times
(from zero to infinite number). If a loop executing continuous then it
is called as Infinite loop. Looping is also called as iterations.

In Iteration statement, there are three types of operation:

o forloop
e while loop
e do-while loop

4.2.2.1 for loop:

The for loop is entry controlled loop. It means that it provide
a more concious loop control structure.

Syntax:

for(initialization;condition;iteration)//iteration =~ means increment/
decrement

{

Statement block;

}

54

When the loop is starts, first part(i.e. initialization) is execute.
It is just like a counter and provides the initial value of loop. But the
thing is, | nitialization is executed only once. The next part(i.e.
condition) is executed after the initialization. The important thing is,
this part provide the condition for looping. If the condition will
satisfying then loop will execute otherwise it will terminate.

Third part(i.e. iteration) is executed after the condition. The
statements that incremented or decremented the loop control
variables.

For example:
import java.io.*;
class number

{

public static void main(String args[]) throws Exception
{

inti;

System.out.printin("list of 1 to 10 numbers");
for(i=1;i<=10;i++)

{

System.out.printin(i);

}

}

}
Output:

C:\MCA>javac number.java
C:\MCA>java number

list of 1 to 10 numbers

1

2

55

9
10

Here we declare i=1 and then it check the condition that if
i<10 then only loop will be executed. After first iteration the value of
i will print and it will incremented by 1. Now the value of i=2 and
again we have to check the condition and value of i will print and
then increment | by 1 and so on.

4.2.2.2 while loop:

The while loop is entry controlled loop statement. The
condition is evaluated, if the condition is true then the block of
statements or statement block is executed otherwise the block of
statement is not executed.

Syntax:
While(condition)
{

Statement block;

}

For example: Write a program to display 1 to 10 numbers using
while loop.

import java.io.*,
class number

{

public static void main(String args[]) throws Exception

{

56
inti=1,
System.out.printin("list of 1 to 10 numbers");
while(i<=10)
{
System.out.printin(i);
i++;
}
}

}
Output:

C:\MCA>javac number.java
C:\MCA>java number
list of 1 to 10 numbers

1

A W

9
10
4.2.2.3 do-while loop:

In do-while loop, first attempt of loop should be execute then
it check the condition.

57

The benefit of do-while loop/statement is that we get entry in
loop and then condition will check for very first time. In while loop,
condition will check first and if condition will not satisfied then the
loop will not execute.

Syntax:
do
{

Statement block;
}
While(condition);

In program,when we use the do-while loop, then in very first
attempt, it allows us to get enter in loop and execute that loop and
then check the condition.

Following program show the use of do-while loop.

For example: Write a program to display 1 to 10 numbers using do-
while loop.

import java.io.*;
class number

{

public static void main(String args[]) throws Exception

{
inti=1;

System.out.printin("list of 1 to 10 numbers");

do
{
System.out.printin(i);
i++;
Jwhile(i<=10);

58
}
Output:
list of 1 to 10 numbers

1

o o b~ W

9
10
4.2.3 Jumps in statement:

Statements or loops perform a set of operartions continually
until the control variable will not satisfy the condition. but if we want
to break the loop when condition will satisy then Java give a
permission to jump from one statement to end of loop or beginning
of loop as well as jump out of a loop.

“break” keyword use for exiting from loop and “continue”
keyword use for continuing the loop.

Following statements shows the exiting from loop by using “break”
statement.

do-while loop:

do

if(condition)

59
{

break;//exit from if loop and do-while loop

For loop:
for(............)
{

1 { TP)

60

Following statements shows the continuing the loop by using
“continue” statement.

do-while loop:

do

if(condition)

{

continue;//continue the do-while loop

61

Labelled loop:

We can give label to a block of statements with any valid
name.following example shows the use of label, break and
continue.

62
For example:
Import java.io.*;
class Demo

{

public static void main(String args[]) throws Exception
{
int j,i;
LOOP1: for(i=1;i<100;i++)
{
System.out.printin(*);
if(i>=10)
{
break;
}
for(j=1;j<100;j++)
{
System.out.printin(“$);
if(i==j)
{
continue LOOP1;

}

System.out.printin(* End of program “);

63
Output:
$
$$
$$9
$$$8$
$$$$8%
$$$5$$8$
$$3$5$$% 8
$$$5$55$%3
$$ES55% S

End of program

4.3 SUMMARY:

In this unit, we covered Selection Statement,

Statement and Jump in Statement.

e In Selection statement, we covered if statement and switch

statement with example.

e In Iteration Statement, we covered for loop, while loop and

do-while loop with example.

e In Jump in Statement, we covered break, continue and label

with example.

64

CLASSES

Unit Structure

5.1 Objective

5.2 class
5.2.1 Creating “main” in a separate class
5.2.2 Methods with parameters
5.2.3 Methods with a Return Type
5.2.4 Method Overloading
5.2.5 Passing Objects as Parameters
5.2.6 Passing Values to methods and Constructor:
5.2.7 Abstract Classes
5.2.8 Extending the class:

5.3 Summary:

5.4 List of references

5.5 Bibliography

5.6 Model answers

5.1 OBJECTIVE :

In this lesson of Java Tutorial, you will learn...

e How to create class
e How to create method
e How to create constructor

5.2 CLASS

Definition: A class is a collection of objects of similar type. Once a
class is defined, any number of objects can be produced which
belong to that class.

Class Declaration
class classname

{
E:iassBody

65

Objects are instances of the Class. Classes and Objects are very
much related to each other. Without objects you can't use a class.

A general class declaration:

class namel

{

//public variable declaration
void methodname()

{

/Ibody of method...
/[Anything

}

}

Now following example shows the use of method.

class Demo

{

private int x,y,z;
public void input()
{

x=10;

y=15;

}

public void sum()
{

Z=x+y;

}

public void print_data()
{

System.out.printin(*Answer is =" +z);

}

public static void main(String argsl])
{

Demo object=new Demo();
object.input();

object.sum();

object.print_data();

}

}

66

In program,

Demo object=new Demo();
object.input();

object.sum();

object.print_data();

In the first line we created an object.

The three methods are called by using the dot operator. When we
call a method the code inside its block is executed.

The dot operator is used to call methods or access them.

5.2.1 Creating “main” in a separate class

We can create the main method in a separate class, but
during compilation you need to make sure that you compile the
class with the “main” method.

class Demo

{

private int x,y,z;

public void input() {
x=10;

y=15;

}

public void sum()

{

Z=x+y;

}

public void print_data()
{
System.out.printin(*Answer is =" +z);
}

}

class SumbDemo

{

public static void main(String argsl])
{

Demo object=new Demo();
object.input();

object.sum();

object.print_data();

}

}

67

Use of dot operator
We can access the variables by using dot operator.
Following program shows the use of dot operator.

class DotDemo

{

int x,y,z;

public void sum(){

Z=Xx+Yy,

}

public void show(){
System.out.printin("The Answer is "+z);

}

}

class Demol

{

public static void main(String args[]){
DotDemo object=new DotDemo();
DotDemo object2=new DotDemo();
object.x=10;

object.y=15;

object2.x=5;

object2.y=10;

object.sum();

object.show();

object2.sum();

object2.show();

1}

output :

C:\cc>javac Demol.java
C:\cc>java Demol

The Answer is 25

The Answer is 15

e Instance Variable
All variables are also known as instance variable. This is because
of the fact that each instance or object has its own copy of values
for the variables. Hence other use of the “dot” operator is to
initialize the value of variable for that instance.

68

5.2.2 Methods with parameters

Following program shows the method with passing parameter.

class prg

{

int n,n2,sum;

public void take(int x,int y)
{

n=x;

n2=y;

}

public void sum()

{

sum=n+n2;

}

public void print()

{

System.out.printin("The Sum is"+sum);
}

}

class prgl

{

public static void main(String argsl[])
{

prg obj=new prg();
obj.take(10,15);
obj.sum();

obj.print();

}

}

5.2.3 Methods with a Return Type
When method return some value that is the type of that
method.

For Example: some methods are with parameter but that method
did not return any value that means type of method is void. And if
method return integer value then the type of method is an integer.

69

Following program shows the method with their return type.

class Demol

{

int n,n2;

public void take(int x,int y)
{

n=Xx;

n=y;

}

public int process()
{

return (n+n2);

}

}

class prg

{

public static void main(String argsl])

{

int sum;

Demol obj=new Demol();
obj.take(15,25);

sum=obj.process();
System.out.printin("The sum is"+sum);
}

}

Output:
The sum is25

5.2.4 Method Overloading
Method overloading means method name will be same but
each method should be different parameter list.

class prgl

{

int x=5,y=5,z=0;

public void sum()

{

Z=x+y,
System.out.printin("Sum is "+z);

}

70

public void sum(int a,int b)
{

X=a,

y=b;

Z=X+Y;
System.out.printin("Sum is "+z);
}

public int sum(int a)

{

X=a,

Z=X+Y;

return z;

}

}

class Demo

{

public static void main(String args|[])
{

prgl obj=new prgl();

obj.sum();

obj.sum(10,12);
System.out.printin(+obj.sum(15));

}

}

Output:
sum is 10
sum is 22
27

5.2.5 Passing Objects as Parameters
Objects can even be passed as parameters.

class paral23

{

int n,n2,sum,mul;

public void take(int x,int y)
{

n=x;

n2=y;

}

71

public void sum()

{

sum=n+n2;

System.out.printin("The Sum is"+sum);
}

public void take2(paral23 obj)

{

n=obj.n;

n2=0bj.n2;

}

public void multi()

{

mul=n*n2;
System.out.printin("Product is"+mul);
}

}

class DemoPara

{

public static void main(String argsl[])
{

paral23 ob=new paral23();
ob.take(3,7);

ob.sum();

ob.take2(ob);

ob.multi();

}

}
Output:

C:\cc>javac DemoPara.java

C:\cc>java DemoPara
The Sum is10
Product is21

We have defined a method “take2” that declares an object named
obj as parameter. We have passed ob to our method. The method
“take2” automatically gets 3,7 as values for n and n2.

72

5.2.6 Passing Values to methods and Constructor:
These are two different ways of supplying values to
methods.

Classified under these two titles -
1.Pass by Value
2.Pass by Address or Reference

e Pass by Value-When we pass a data type like int, float or
any other datatype to a method or some constant values
like(15,10). They are all passed by value. A copy of
variable’s value is passed to the receiving method and
hence any changes made to the values do not affect the
actual variables.

class Demopbv

{

int n,n2;

public void get(int x,int y)

{

x=x*x; //Changing the values of passed arguments
y=y*y; /[/[Changing the values of passed arguments

}
}

class Demo345

{

public static void main(String args[])

{

int a,b;

a=1,

b=2;

System.out.printin("Initial Values of a & b "+a+" "+b);
Demopbv obj=new Demopbv();
obj.get(a,b);

System.out.printin("Final Values "+a+" "+b);
}

}

Output:

C:\cc>javac Demo345.java

73

C:\cc>java Demo345
Initial Valuesofa& b 12
Final Values 1 2

e Pass by Reference
Objects are always passed by reference. When we pass a value by
reference, the reference or the memory address of the variables is
passed. Thus any changes made to the argument causes a change
in the values which we pass.

Demonstrating Pass by Reference---
class pass_by_ref

{

int n,n2;

public void get(int a,int b)

{

n=a,

n2=b;

}

public void doubleit(pass_by_ref temp)
{

temp.n=temp.n*2;
temp.n2=temp.n2*2;

}

}

class apply7

{

public static void main(String argsl])

{

int x=5,y=10;

pass_by_ref obj=new pass_by_ref();
obj.get(x,y); //Pass by Value
System.out.printin("Initial Values are--");
System.out.printin(+obj.n);
System.out.printin(+obj.n2);
obj.doubleit(obj); //Pass by Reference
System.out.printin("Final Values are");
System.out.printin(+obj.n);
System.out.printin(+obj.n2);

}

}

74

5.2.7 Abstract Classes

Definition: An abstract class is a class that is declared as abstract.
It may or may not include abstract methods. Abstract classes
cannot be instantiated, but they can be subclass.

An abstract method is a method that is declared without an
implementation (without braces, and followed by a semicolon), like
this:

abstract void studtest(int rolino, double testfees);

If a class includes abstract methods, the class itself must be
declared abstract, as in:

public abstract class GraphicObject

{

/I declare fields
/l declare non-abstract methods

abstract void draw();

When an abstract class is subclass, the subclass usually
provides implementations for all of the abstract methods in its
parent class. However, if it does not, the subclass must also be
declared abstract.

For example: In an object-oriented drawing application, you can
draw circles, rectangles, lines, Bezier curves, and many other
graphic objects. These objects all have certain states (for example:
position, orientation, line color, fill color) and behaviors (for
example: moveTo, rotate, resize, draw) in common. Some of these
states and behaviors are the same for all graphic objects—for
example: position, fill color, and moveTo. Others require different
implementations—for example, resize or draw. All GraphicObjects
must know how to draw or resize themselves; they just differ in how
they do it. This is a perfect situation for an abstract superclass. You
can take advantage of the similarities and declare all the graphic
objects to inherit from the same abstract parent object—for
example, GraphicObject, as shown in the following figure.

75

GraphicObject

I
I I | |

Rectangle Line Bezier Circle

How to implement above diagram concept with source code:

abstract class GraphicObject

{

intx,y;

void moveTo(int newX, int newY)

}

abstract void draw();
abstract void resize();

}

Each non-abstract subclass of GraphicObject, such as Circle and
Rectangle, must provide implementations for the draw and resize
methods:

class Circle extends GraphicObject {

void draw() {

}

void resize() {

76
class Rectangle extends GraphicObject {

void draw() {

}

void resize() {

Abstract classes are those which can be used for creation of
objects. However their methods and constructors can be used by
the child or extended class. The need for abstract classes is that
you can generalize the super class from which child classes can
share its methods. The subclass of an abstract class which can
create an object is called as "concrete class".

For example:

Abstract class A

{

abstract void method1();

void method?2()

{

System.out.printin("this is real method");
}

}

class B extends A

{
void method1()

{
System.out.printin("B is execution of method1");
}
}

class demo

{

public static void main(String arg[])
{

B b=new B();

b.method1();

b.method2();

}
}

77

5.2.8 Extending the class:

Inheritance allows to subclass or child class to access all
methods and variables of parent class.
Syntax:

class subclassname extends superclassname
Varables;
Methods;

For example: calculate area and volume by using Inhertance.
class data

{

intl;

int b;

data(int c, int d)

{

I=c;

b=d;

}

int area()

{

return(l*b);

}

}

class data2 extends data
{

int h;

data2(int c,int d, int @)
{

super(c,d);

h=a;

}

int volume()

{

return(l*b*h);

}

}

78

class dataDemo

{

public static void main(String args|])

{

data2 d1=new data2(10,20,30);

int areal=dl.area(); //superclass method
int volumel=dl1.volume();// subclass method
System.out.printin("Area="+areal);
System.out.printin("Volume="+volumel);

}

}
Output:

C:\cc>javac dataDemo.java

C:\cc>java dataDemo

Area=200
Volume=6000
“Is A" - is a subclass of a superclass (ex:

"Has A" - has a reference to (ex: variable, ref to object).

o Access Control —

Away to limit the access others have to your code.

e Same package - can access each others’ variables and

methods, except for private members.

e Outside package - can access public classes. Next, can
access members that are public. Also, can access protected
members if the class is a subclass of that class.

Same package - use package keyword in first line of source file, or

no package keyword and in same directory.

o Keywords -
1. public - outside of package access.

2. [no keyword] - same package access only.

3. protected - same package access. Access if class is a

subclass of, even if in another package.
4. private - same class access only.

79

5.3 SUMMARY:

In this unit, we learn the concept of class and how to create
method and how to pass parameters by value and by reference and
method overloading with example. In this unit, we also learn the
concept of inheritance.

5.4 LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt, Tata
McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C
THOMAS WU

5.5 BIBLIOGRAPHY

http://www.michael-homas.com/tech/java/javacert/JCP Access.htm

http://en.wikipedia.org/wiki/Class %28computer science%29#Seal
ed classes

http://www.javabeginner.com/learn-javal/java-abstract-class-and-
interface

5.6 MODEL ANSWERS

Q.1) Explain class and with example.

Ans: refer 5.2

Q.2) Explain method with pass by value and pass by reference.
Ans: refer 5.2.8

Q.3) Explain method overloading?

Ans: refer 5.2.6

80

INTERFACES

Unit Structure

6.1 Introduction

6.2 More about ‘interface’

6.3 Access

6.4 Multiple Inheritance

6.5 Interfaces and Abstract Classes
6.6 Inheritance within interfaces

6.7 Summary

6.1 INTRODUCTION

In chapter 5 you have learnt the following concepts:

e Abstract class, which allows you to create methods in a
class without writing the code for execution of the method
(implementation of the method).

e Inheritance through the keyword ‘extends’ which tells the
machine that an (inherited) class defined is of the type of a
base class.

e Methods in the inherited class must provide implementation.
(except when the inherited class is an Abstract class as
well.

Interface takes the above concepts even further. It provides a
mechanism to define a class with absolutely no implementation
(code for execution of a method or logic).

In this chapter you will learn more about interfaces, its syntax and
use, the difference between interfaces and abstract class and when
to use which.

81

6.2 MORE ABOUT ‘INTERFACFE’

One or more classes can implement a defined interface

Interface

implements/w\

Class1 Class2

Class3

When a class implements a defined interface, it has to
implement (write the code, execution logic) for all the methods
defined by the interface. The class is free to define more methods if
necessary.

interface MusicPlayer
e.g.
void on() In this example, class
MP3Player implements
void off() . .
interface MusicPlayer. Here
all methods of MusicPlayer
are implemented; and there
is one more additional
MP3Player T method “addMusic()”
implements
MP3Player
void on()
void off()

Similarly, you could have other classes inherit from the same
interface MusicPlayer. Examples —

MusicPlayer Interface

MP3Player iPod CDPlayer Classes...

82

Syntax of Interface

To define an interface, use the interface keyword instead of the
class keyword.

SYNTAX:
package XxXx.Xxx;
interface MusicPlayer{
/I Cannot have method implementations:
void on();
void off();
void play();
void stop();
}

Points to note above:

e A semicolon after the method definition
¢ No implementation logic in the method above
¢ interface keyword instead of class

6.3 ACCESS

In the above example, we've not defined whether the
interface is public, private or protected. A private interface makes
no sense. If not defined the above interface is visible in the
package where the interface belongs. You can define an interface
public — which means the interface is visible outside the package as
well.

Methods inside the interface are public by default. So in the
above example, the methods are public and visible outside of the
package as well.

The class which inherits the methods must explicitly define
the methods to be public.

SYNTAX:
class MP3Player implements MusicPlayer{

public void on(){

83
System.out.printin(“the MP3 Player is ON");
}
public void off()}{
System.out.printin(“the MP3 Player is OFF”),
}
public void play(){
System.out.printin(“the MP3 Player is playing”);
}
public void stop(){

System.out.printin(“the MP3 Player is off”);

6.4 MULTIPLE INHERITANCE

In Java, there is nothing which prevents from inheriting from
multiple interfaces. Since there are no implementations in the
methods (code in the methods), there is no danger or overwriting
any implementations between multiple interfaces.

class inherits from

/k MusicPlayer and
MP3P iPod q

layer [~ ayer
/

MusicPlayer VideoPlayer In this example, the iPod

VideoPlayer interfaces.

/l Multiple interfaces.
interface MusicPlayer {
void on();

void off();

void play();

84

void stop();
}

}

interface VideoPlayer{
void on();

void off();

void play();

void stop();

void changeContrast(int x);

void changeBrightness(int x);

}

}

class iPod implements MusicPlayer, VideoPlayer{
public void on(){

System.out.printin(“the MP3 Player is ON");
}
public void off(){

System.out.printin(“the MP3 Player is OFF");
}
public void play(){

System.out.printin(“the MP3 Player is playing”);
}
public void stop(){

System.out.printin(“the MP3 Player is off”);

85
}
public void changeContrast(int x){
System.out.printin(“Constrast Changed by” + x);
}
public void changeBrightness(int x){

System.out.printin(“Brightnesss Changed by” + x);

}
}

6.5 INTERFACES AND ABSTRACT CLASSES

Interfaces are similar to abstract classes. The differences are as
follows:

1. All methods in an interface are abstract. Which means all
methods must be empty; no code implemented.

2. In abstract class, the methods can have
code/implementation within it. Atleast one method must be
abstract.

3. All properties (data fields) in an interface are static final.
Properties in an abstract class need not be static final.

4. Interfaces are implemented(implements keyword); Abstract
classes are extended(extends keyword)

5. Class can extend only one abstract class; where as a class
can implement multiple interfaces (multiple inheritance)

6. Contractual obligation: When a class specifies that it
implements an interface, it must define all methods of that
interface. A class can implement many different interfaces. If
a class doesn't define all methods of the interfaces it agreed
to define (by the implements clause), the compiler gives an
error message, which typically says something like "This
class must be declared abstract". An abstract class is one
that doesn't implement all methods it said it would. The
solution to this is almost always to implement the missing
methods of the interface. A misspelled method name or
incorrect parameter list is the usual cause, not that it should
have been abstract!

86

6.6 INHERITANCE WITHIN INTERFACES

You can add new methods to an existing interface by extending it;
and adding new methods.

ElectronicDevices

interface
T extends
\ interface
|
MusicPlayer Videol |
implements
| / Class
iPod

In the above example, please note

e ElectronicDevices is an interface.

e MusicPlayer and VideoPlayer are interfaces which “extend”
ElectronicDevices

e iPod is a class which implements MusicPlayer and
VideoPlayer

So, if ElectronicDevices interface had one property — which is
“powerSource”; it would be inherited by all classes which implement
MusicPlayer or VideoPlayer

Example for practice:

Write a class that implements the CharSequence interface
found in the java.lang package. Your implementation should return
the string backwards. Select one of the sentences from this book to
use as the data. Write a small main method to test your class;
make sure to call all four methods.

Answer 1:
/I CharSequenceDemo presents a String value -- backwards.
public class CharSequenceDemo implements CharSequence {

private String s;

87
public CharSequenceDemo(String s) {
/It would be much more efficient to just reverse the string
/lin the constructor.
this.s =s;
}
private int fromEnd(int i) {
return s.length() - 1 - i;
}
public char charAt(int i) {
if (i < 0) || (i >= s.length())) {
throw new StringindexOutOfBoundsException(i);

}

return s.charAt(fromEnd(i));
}
public int length() {
return s.length();
}
public CharSequence subSequence(int start, int end) {
if (start < 0) {
throw new StringlndexOutOfBoundsException(start);
}
if (end > s.length()) {
throw new StringindexOutOfBoundsException(end);
}
if (start > end) {

throw new StringlndexOutOfBoundsException(start - end);

88
}
StringBuilder sub =

new StringBuilder(s.subSequence (from End(end),from End
(start)));

return sub.reverse();
}
public String toString() {
StringBuilder s = new StringBuilder(this.s);
return s.reverse().toString();
}
//Random int from O to max.
private static int random(int max) {
return (int) Math.round(Math.random() * max + 0.5);
}
public static void main(String[] args) {
CharSequenceDemo s =

new CharSequenceDemo("Write a class that implements
the CharSequence interface found in the java.lang package.");

/lexercise charAt() and length()

for (inti = 0; i < s.length(); i++) {
System.out.printin(s.charAt(i));

}

/lexercise subSequence() and length();

int start = random(s.length() - 1);

int end = random(s.length() - 1 - start) + start;

System.out.printin(s.subSequence(start, end));

89
/lexercise toString();

System.out.printin(s);

}
6.7 SUMMARY:

In this chapter you we learn more about interfaces, its syntax
and use, the difference between interfaces and abstract class with
examples. We also learn the concept of inheritance within interface.

90

EXCEPTION HANDLING

Unit Structure

7.1
7.2
7.3
7.4

7.5
7.6
7.7

Objective
Introduction
Overview
What is Exceptions and handling exception?
7.4.1 Compile time errors
7.4.2 Run time errors
7.4.3 try...catch:
7.4.4 Using Multiple catch Blocks
7.4.5 finally Block
7.4.6 Throwing an Exception
7.4.6.1 Using the throw Statement
7.4.6.2 Using the throws Statement
7.4.7 Creating and Using Your Own Exception Classes
Summary:
List of references
Bibilography

7.1 OBJECTIVE

In this lesson of Java Tutorial, you will learn...

PN E

The exception handling mechanism.

Write try ... catch structures to catch expected exceptions.
Use finally blocks to guarantee execution of code.

Throw/ Throws exceptions.

7.2 INTRODUCTION

An exception is an event, which occurs during the execution of

the program, that an interrupt the normal flow of the program’s
instruction. In other words, Exceptions are generated when a
recognized condition, usually an error condition, arises during the
execution of a method. Java includes a system for running
exceptions, by tracking the potential for each method to throw
specific exceptions. For each method that could throw an

91

exception, your code must report to the Java compiler that it could
throw that exact exception. The compiler marks that method as
potentially throwing that exception, and then need any code calling
the method to handle the possible exception. Exception handling is
basically use five keyword as follows:

o fry

e catch

e throw

e throws

o finally

7.3 OVERVIEW

Exceptions are generated when an error condition occur
during the execution of a method. It is possible that a statement
might throw more than one kind of exception. Exception can be
generated by Java-runtime system or they can be manually
generated by code. Error-Handling becomes a necessary while
developing an application to account for exceptional situations that
may occur during the program execution, such as

Run out of memory

Resource allocation Error
Inability to find a file

Problems in Network connectivity.

In this unit we will learn the exception handling mechanism.

7.4 WHAT IS EXCEPTIONS AND HANDLING
EXCEPTION?

Exceptions are generated when a recognized an error
condition during the execution of a program. Java includes a
system for running exceptions, by tracking the potential for each
method to throw specific exceptions

« for each method that could throw an exception, your code
must report to the Java compiler that it could throw that
exact exception.

« the compiler marks that method as potentially throwing that
exception, and then need any code calling the method to
handle the possible exception.

92

There are two ways to handle an exception:

e Yyou can try the "risky" code, catch the exception, and do
something about it, after which the transmission of the
exception come to an end

e« you can mark that this method throws that exception, in
which case the Java runtime engine will throw the exception
back to the method.

So, if you use a method in your code that is marked as
throwing a particular exception, the compiler will not allow that code
unless you handle the exception. If the exception occurs in a try
block, the JVM looks to the catch block(s) that follow to see if any of
them equivalent the exception type. The first one that matches will
be executed. If none match, then this methods ends, and execution
jumps to the method that called this one, at the point the call was
made.

Following figure shows the Exception type.

Throwable

Error Exception

Compile-time /
errors

RuntimeException IOException SQLException

Run-time errors \

ArithmeticException NullPointerException

Figure 7.1. A partial view of the Throwable family
An error means fault and there are two types of error as follows:

7.3.1 Compile time errors

Compiler time error means Java compiler identify the syntax
error at the time of compilation. And without successfully
compilation, compiler does not create .class file. That means we
have to compile the program which should be error free and then

93

compiler creates .class file of the program and then we can run the
program.

The common problems are:

Missing braces

Missing semicolon

Missing double quote in string
= instead of == operator

And so on.

For example:
class Tryl

{

public static void main(String args[])
{

inta=12;

int b=0;

int c=a/b
System.out.printin("Division is+c);
}

}

Output:

C:\cc>javac Tryl.java
Tryl.java:8:';' expected
System.out.printin("Division is+c);
N

Tryl.java:8: unclosed string literal
System.out.printin("Division is+c);

AN

2 errors

7.3.2 Run time errors

Several time program may compile successfully and
compiler creates the .class file of the program but when the time of
running the program, it shows the error and that type of error called
run time error.

The common problems are:

Divide by zero

Conversion of invalid string to number

access the element that is out of bound of an array
Passing the parameters with invalid range.

And so on.

94

For example:
write a program to find out division of two numbers.
class Tryl

{

public static void main(String args|])
{

inta=12;

int b=0;

int c=a/b;
System.out.printin("Division is"+c);
}

}
Output:

C:\cc>javac Tryl.java

C:\cc>java Tryl
Exception in thread "main" java.lang.ArithmeticException: /
by zero at Tryl.main(Tryl.java:7)

7.3.3 try...catch:

If a method is going to resolve potential exception internally, the
line of code that could generate the exception is placed inside a try
block

« there may be other code inside the try block, before and/or
after the risky line(s) - any code that depends upon the risky
code's success should be in the try block, since it will
automatically be skipped if the exception occurs

Syntax —
try
{
code
risky/unsafe code
code that depends on the risky code succeeding
}

There is usually at least one catch block immediately after the try
block

e a catch block must specify what type of exception it will
catch

95

Syntax —
catch (ExceptionClassName exceptionObjectName)
{
code using methods from exceptionObjectName
}

« there can be more than one catch block, each one marked
for a correct exception class

« the exception class that is caught can be any class in the
exception hierarchy, either a general (base) class, or a very
correct (derived) class

« the catch block(s) must handle all checked exceptions that
the try block is known to throw unless you want to throw that
exception back to the method.

e it is possible to have a try block without any catch blocks if
you have a finally block but any checked exceptions still
need to be caught, or the method needs to declare that it
throws them

If an exception occurs within a try block, execution jumps to
the first catch block whose exception class matches the exception
that occurred. Any steps remaining in the try block are skipped. If
no exception occurs, then the catch blocks are skipped.

If declare a variable within a try block, it will not exist outside
the try block, since the curly braces define the scope of the
variable. You will often need that variable later, if nowhere else
other than the catch or finally blocks, so you would need to declare
the variable before the try.

If you declare but don't initialize a variable before a try block,
and the only place you set a value for that variable is in the try
block, then it is possible when execution leaves the try ... catch
structure that the variable never received a value. So, you would
get a "possibly uninitialized value" error message from the
compiler, since it actually keeps track of that sort of thing. Usually
this happens with object references; you would also generally
initialize them to null.

public class demo

{

public static void main(String[] args)

{

int ansl, ans2;
inta=2,b=2,c=0;

96

try
{
ansl = a/b;
System.out.printin("a/b =" + ansl);
ans2 = alc;
System.out.printin("a/c =" + ans2);
}
catch(ArithmeticException e)
{
System.out.printin("Arithmetic
Exception!");
}
System.out.printin("demo is over");
}
}
Output:

C:\>set path=C:\Java\jdk1.5.0_01\bin

C:\>javac demo.java

C:\>java demo
ab=1

Arithmetic Exception!
demo is over

Code Explanation —

The program will print the first result, and then not succeed
while performing the division for the second equation. Execution will
step to the catch block to print our message on the screen

97

Example -

The prior example used a RuntimeException, which your
code is not obligated to handle. Most methods in the I/O classes
throw IOException, which is an exception that you must handle.
Following program shows the use of IOException.

import java.io.lOException;

public class demo

{

public static void main(String[] args)
{
int num = 0;
num = System.in.read();
try
{
num = System.in.read();
System.out.printin("You entered " + (char) num);
}
catch (IOException e)
{
System.out.printIn("IO Exception occurred");
}
}

}

Output:

C:\>javac demo.java

demo.java:11: unreported exception java.io.lOException; must be
caught or declared to be thrown

98
num = System.in.read(); // comment out this line
N
1 error

Code Explanation:

The line marked to comment out throws IOException, but is not
in a try block, so the compiler rejects it. The second read attempt is
within a try block, as it should be.

e there is no way we can force an IOException from the
keyboard to test the catch block.

7.3.4 Using Multiple catch Blocks
It is possible that a statement might throw more than one
kind of exception
e you can list a sequence of catch blocks, one for each
possible exception
« remember that there is an object hierarchy for exceptions —

class demo

{
public static void main (String args [])

{
int A[] = new int [5];

try

{

for (int c = 0; ¢ <5; c++)

{

//do nothing

}

for (int ¢ = 0; ¢ <5; c++)
{

Alc] =c/c;

99

catch (ArraylndexOutOfBoundsException e)

{

System.out.printin ("Array out of bound ");

}

catch (ArithmeticException e)

{

System.out.println ("Zero divide error");

}
}

Output:

C:\>javac demo.java
C:\>java demo

Zero divide error
c:\>

7.3.5 Finally Block

To guarantee that a line of code runs, whether an exception
occurs or not, use a finally block after the try and catch blocks

The code in the finally block will almost always execute,
even if an unhandled exception occurs; in fact, even if a return

statement is encountered

« if an exception causes a catch block to execute, the finally
block will be executed after the catch block

« if an uncaught exception occurs, the finally block executes,
and then execution exits this method and the exception is
thrown to the method that called this method

100
Syntax —

try
{

risky code/ unsafe code block

}

catch (ExceptionClassName exceptionObjectName)

{

code to resolve problem

}
finally

{

code that will always execute

}

In summary:

e atry block is followed by zero or more catch blocks
« There may one finally block as the last block in the structure.

e There must be at least one block from the collective set of
catch and finally after the try.

It's possible to have a try block followed by a finally block, with no
catch block

« this is used to prevent an unchecked exception from exiting
the method before cleanup code can be executed

Example:

public class demo

{

public static void main(String args|])
{

try

{

System.out.printin("Try Block before the error.");
System.out.printin(1/0);
System.out.printin("Try Block after the error.");

}

catch(java.lang.ArithmeticException e)

{
System.out.printin("Catch Block™);

101

System.out.printin("A Stack Trace of the Error:");
e.printStackTrace();

/le.getMessage();

System.out.printin("The operation is not possible.");

}
finally

{
System.out.printin("Finally Block™);

}

System.out.printin("demo is over");

}
}

Output:

C:\>javac demo.java

C:\>java demo

Try Block before the error.

Catch Block

A Stack Trace of the Error:

java.lang.ArithmeticException: / by zero
at demo.main(demo.java:8)

The operation is not possible.

Finally Block

demo is over

7.3.6 Throwing an Exception

You can throw an exception explicitly using the throw statement.

Example:

You need to throw an exception when a user enters a wrong

student ID or password.

The throws clause is used to list the types of exception that
can be thrown in the execution of a method in a program.

7.3.6.1 Using the throw Statement

1. The throw statement causes termination of the normal flow
of control of the java code and prevents the execution of the

subsequent statements.

102
2. The throw clause convey the control to the nearest catch
block handling the type of exception object throws.
3. If no such catch block exists, the program terminates.

The throw statement accepts a single argument, which is an object
of the Exception class.

Syntax —

throw ThrowableObj

You can use the following code to throw the lllegalStateException
exception:

class demo

{

static void tdemo()
{

try

{

throw new lllegalStateException ();

}

catch (NullPointerException e)

{

System.out.printin ("Not Caught by the catch block inside tdemo
0.-");

}

}

public static void main (String args]])

{

try

{

tdemo();

}

catch(lllegalStateException e)

{

System.out.printin("Exception Caught in:"+e);
}

}
}

103

Output

C:\>javac demo.java

C:\>java demo

Exception Caught in:java.lang.lllegalStateException
c:\>

7.3.6.2 Using the throws Statement

The throws statement is used by a method to specify the
types of exceptions the method throws. If a method is capable of
raising an exception that it does not handle, the method must
specify that the exception have to be handled by the calling
method.

This is done using the throws statement. The throws clause lists the
types of exceptions that a method might throw.

Syntax —

[< access specifier >] [< modifier >] < return type > < method name
> [< arg list >] [throws <exception list >]

Example:
You can use the following code to use the throws statement:
class demo

{

static void throwMethod () throws ClassNotFoundException
{

System.out.printin ("In throwMethod ");

throw new ClassNotFoundException ();

}

public static void main (String args [])

{

try

{

throwMethod ();

}

catch (ClassNotFoundException e)

{

104

System.out.printin (" throwMethod has thrown an Exception :" +e);

Output

C:\>javac demo.java
C:\>java demo

In throwMethod

throw Method has thrown an Exception :java.lang.Class Not Found
Exception

7.3.9 Creating and Using Your Own Exception Classes

You can create your own exception class by extending an existing
exception class

Syntax —

[modifiers] New Exception Class Name extends
ExceptionClassName

{

create constructors that usually delegate to super-constructors

}

You could then add any fields or methods that you wish,
although often that is not required. You must, however, override
any constructors you wish to use: Exception (), Exception(String
message), Exception(String message, Throwable cause),
Exception (Throwable cause). Usually you can just call the
equivalent super-constructor. If you extend RuntimeException or
one of its subclasses, your exception will be treated as a runtime
exception.

When a situation arises for which you would like to throw the
exception, use the throw keyword with a new object from your
exception class, for example:

Syntax —

throw new ExceptionClassName(messageString);

105

7.4 SUMMARY :

In this lesson of the Java tutorial you have learned:

how Java's exception handling mechanism works

how to try and catch exceptions

about the various types of checked and unchecked exceptions
how to write exception classes

how to throw exceptions

7.5 LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt,
Tata McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C
THOMAS WU

7.6 BIBILOGRAPHY

http://java.sun.com/docs/books/tutorial/essential/exceptions/

Model Answers :

Q.1) What is exception in Java?
Ans: Refer 7.3

Q.2) What is exception and gives the list of common exception in
java.

Ans: Refer 7.3 and

Q.3) What is the ‘finally’ block?
Ans: refer

Q.4) how try-catch is works?

Ans: refer

106

I/O PACKAGES

Unit Structure
8.1 Introduction
8.2 Stream
8.2.1 Byte Streams
8.2.1.1 InputStream
8.2.1.2 OutputStream
8.2.2 Character Streams
8.2.2.1 Reader
8.2.2.2 Writer
8.3 How Files and Streams Work
8.4 Classes
8.5 Exceptions Classes
8.6 Standard Streams
8.7 Working with Reader classes
8.7.1 InputStreamReader
8.7.2 BufferedReader
8.8 1/O Streams
8.8.1 Filelnputstream
8.8.2 FileOutputStream
8.8.3 DatalnputStream
8.9 Finding a File
8.10 Summary

8.1 INTRODUCTION

Stream is an abstract demonstration of input or output
device. By using stream, we can write or read data. To bring in
information, a program is open a stream on an information source
(a file, memory, a socket) and read information sequentially. In this
unit, we will learn the concept of stream, 1/0 package.

8.2 STREAM:

The Java Input/Output (I/O) is a part of java.io package.
The java.io package contains a relatively large number of classes

107

that supportinput and output operations. The classes in the
package are primarily abstract classes and stream-oriented that
define methods and subclasses which allow bytes to be read from
and written to files or other input and output sources.

For reading the stream:

Open the stream

Read information

Close the stream

For writing in stream:

Open the stream

Write information

Close the stream

There are two types of stream as follows:

o] Byte stream
o] Character stream

8.2.1 Byte Streams:

It supports 8-bit input and output operations. There are two
classes of byte stream

o] InputStream
o] OutputStream

8.2.1.1 Input Stream:

The InputStream class is used for reading the data such as
a byte and array of bytes from an input source. An input source can
be a file, a string, or memory that may contain the data. It is an
abstract class that defines the programming interface for all input
streams that are inherited from it. An input stream is automatically
opened when you create it. You can explicitly close a stream with
the close() method, or let it be closed implicitly when the object is
found as a garbage.

The subclasses inherited from the InputStream class can be
seen in a hierarchy manner shown below:

108

Input Stream

- ByteArraylnputStream

- FilelnputStream

- ObjectinputStream

- FilterInputStream

- PipedinputStream

- StringBufferinputStream

- FilterInputStream

BufferedInputStream
DatalnputStream
LineNumberInputStream

o O O O

PushbacklinputStream

8.2.1.2 OutputStream:

The OutputStream class is a sibling to InputStream that is
used for writing byte and array of bytes to an output source. Similar
to input sources, an output source can be anything such as a file, a
string, or memory containing the data. Like an input stream, an
output stream is automatically opened when you create it. You can
explicitly close an output stream with the close() method, or let it
be closed implicitly when the object is garbage collected.

The classes inherited from the OutputStream class can be
seen in a hierarchy structure shown below:

Output Stream

- ByteArrayOutputStream

- FileOutputStream

- ObjectOutputStream

- FilterInputStream

- PipedOutputStream

- StringBufferinputStream

- FilterOutputStream
o BufferedOutputStream
o DataOutputStream
0 PrintStream

109

OutputStream is also inherited from the Object class. Each
class of the OutputStream provided by the java.io package is
intended for a different purpose.

8.2.2 Character Streams:

It supports 16-bit Unicode character input and output. There
are two classes of character stream as follows:

0 Reader
o Writer

These classes allow internationalization of Java I/O and also allow
text to be stored using international character encoding.

8.2.2.1 Reader:

- BufferedReader

0 LineNumberReader
- CharAraayReader
- PipedReader
- StringReader
- FilterReader

0 PushbackReader
- InputStreamReader

o FileReader

8.2.2.2 Writer:

- BufferedWriter
- CharAraayWriter
- FileWriter
- PipedWriter
- PrintWriter
- String Writer
- OutputStreamWriter
o Filewriter

8.3 HOW FILES AND STREAMS WORK:

Java uses streams to handle 1/0 operations through which
the data is flowed from one location to another. For example, an
InputStream can flow the data from a disk file to the internal

110

memory and an OutputStream can flow the data from the internal

memory to a disk file.

The disk-file may be a text file or a binary file.

When we work with a text file, we use a character stream where
one character is treated as per byte on disk. When we work with a
binary file, we use a binary stream.

The working process
diagram.

of the 1/0 streams can be shown in the given

INPUT STREAM
READ DATA
FLOW OF DATA v
‘ DISK- FILE
INTERNAL MEMORY
A
WRITE DATA
FLOW OF DATA
\ 4
OUTPUT STREAM
8.4 CLASSES:

The following

lists of classes are provided by the java.io

package shown in the table:

Class

[Description

[BufferedIinputStream

It used for creating an internal buffer array.

It supports the mark and reset methods.

[Buffered Output
Stream

This class used for writes byte to output stream.
It implements a bufferedoutput stream.

IBuffered Reader

This class provides read text from character input
stream and buffering characters. It also reads
characters, arrays and lines.

Buffered Writer

This class provides write text from character output
stream and buffering characters. It also writes
characters, arrays and lines.

IByteArraylnput
Stream

It contains the internal buffer and read data from
the stream.

111

[ByteArrayOutput This class used for data is written into byte array.
Stream This is implemented in output stream class.
CharArrayReader It used for char input stream and implements al
character buffer.
CharArrayWriter This class also implements a character buffer and it

uses an writer.

Datalnput Stream

This class reads the primitive data types from the
input stream in a machine format.

DataOutputStream | This class writes the primitive data types from the
output stream in machine format.
File This class shows a file and directory pathnames.

File Descriptor

This class uses for create a FilelnputStream and
|[FileOutputStream.

FilelnputStream

It contains the input byte from a file and implements
an input stream.

FileOutputStream

It uses for writing data to a file and also implements
an output stream.

FilePermission

It provides the permission to access a file or
directory.

FileReader This class used for reading characters file.
FileWriter This class used for writing characters files.
InputStream This class represents an input stream of bytes.
It reads bytes and decodes them into characters.
InputStreamReader

ILineNumberReader

This class has a line numbers

ObjectinputStream

This class used for recover the object to serialize
previously.

ObjectinputStream.
GetField

This class access to president fields read from
input stream.

112

ObjectOutputStream

This class used for writing the primitive data types
and also to write the object to read by the
ObjectinputStream.

ObjectStreamClass

Serialization's descriptor for classes.

This class describes the serializable field.

ObjectStreamField
OutputStream This class represents an output stream of bytes.
. It writes bytes and decodes them into characters.
OutputStreamWriter n
StringReader This is a character string class. It has character
read source.
StringWriter This is also a character string class. It uses to
shows the output in the buffer.
Writer It uses for writing to character stream.

8.5 EXCEPTIONS CLASSES:

The following summary of the exception classes provided by
the java.io package shown in the table:

[Exceptions

[Description

Char Conversion
Exception

It provides detail message in the catch block to
associated with the CharConversionException

EOF Exception

This exception indicates the end of file. When
the file input stream is to be end then the
EOFEXxception is to be occured.

FileNotFound
Exception

When the opened file's pathname does not
find then this exception occurs.

InterruptedIO
Exception

When the 1/0O operations are interrupted from
any causes then it occurs.

InvalidClassException

Any problems to be created with class, when
the Serializing runtime to be detected.

113

InvalidObject When the de-serialized objects fails then it
Exception occurs.

IOException When the 1/O operations fail then it occurs.
NotActive Exception The Serialization or deserialization

operations are not active then it occurs.

NotSerializable This exception occurs when the instance is

Exception required to be a Serializable interface.

ObjectStream This is a supper class of all exception class.

Exception It is used for specific Object Stream Classes.

WriteAborted In this exception to be thrown by the

Exception ObjectStreamException during a write
operating.

8.6 STANDARD STREAMS

Standard Streams are a feature provided by many operating
systems. By default, they read input from the keyboard and write
output to the display. They also support I/O operations on files.

v' Standard Input: - Accessed through System.in which is used
to read input from the keyboard.

v/ Standard Output: - Accessed through System.out which is
used to write output to be display.

v/ Standard Error: - Accessed through System.err which is
used to write error output to be display.

Java also supports three Standard Streams:

These objects are defined automatically and do not need to
be opened explicitly.

Standard Output and Standard Error, both are to write
output; having error output separately so that the user may read
error messages efficiently.

114
System.in is a byte stream that has no character stream
features. To use Standard Input as a character stream, wrap
System.in within the InputStreamReader as an argument.

InputStreamReader inp= new InputStreamReader (System.in);

8.7 WORKING WITH READER CLASSES

Java provides the standard I/O facilities for reading text from
either the file or the keyboard on the command line. The Reader
class is used for this purpose that is available in the java.io
package. It acts as an abstract class for reading character streams.
The only methods that a subclass must implement are read(char(],
int, int) and close(). The Reader class is further categorized into
the subclasses.

The following diagram shows a class-hierarchy of the
java.io.Reader class.

However, most subclasses override some of the methods in
order to provide higher efficiency, additional functionality, or both.

8.7.1 InputStreamReader:

An InputStreamReader is a bridge from byte streams to
character streams i.e. it reads bytes and decodes them into
Unicode characters according to a particular platform. Thus, this
class reads characters from a byte input stream. When you create
an InputStreamReader, you specify an InputStream from which, the
InputStreamReader reads the bytes.

The syntax of InputStreamReader is written as:

InputStreamReader<variable_name>= new InputStreamReader
(System.in)

8.7.2 BufferedReader:

The BufferedReader class is the subclass of the Reader
class. It reads character-input stream data from a memory area
known as a buffer maintains state. The buffer size may be
specified, or the default size may be used that is large enough for
text reading purposes.

BufferedReader converts an unbuffered stream into a
buffered stream using the wrapping expression, where the
unbuffered stream object is passed to the constructor for a buffered
stream class.

115

For example the constructors of the BufferedReader class shown
as:

BufferedReader (Reader in): Creates a buffering character-input
stream that uses a default-sized input buffer.

BufferedReader (Reader in, int sz): Creates a buffering character-
input stream that uses an input buffer of the specified size.

BufferedReader class provides some standard methods to perform
specific reading operations shown in the table. All methods throw
an IOException, if an I/O error occurs.

Method Return Description
Type

read() int Reads a single character
read(char|] cbuf, int Read characters into a portion of an
int off, int len) array.

. . Read a line of text. A line is
readLine() String considered to be terminated by ('\n").
close() void Closes the opened stream.

This program illustrates use of standard input stream to read the
user input.

import java.io.*;

public class ReadStandardlO
{

public static void main(String[] args) throws IOException

{

InputStreamReader inp = new InputStreamReader(System.in)
BufferedReader br = new BufferedReader(inp);

System.out.printin("Enter text : ");

String str = in.readLine();

116

System.out.printin("You entered String : ");

System.out.printin(str);

}
}

Output of the Program:

C:\>javac ReadStandardlO.java
C:\>java ReadStandardlO
Enter text:

this is an Input Stream

You entered String:

this is an Input Stream

Cc:\>

The streams provide a simple model for reading and writing
data. However, streams don't support all the operations that are
common with a disk file. Now, we will learn how to work with a file
using the non-stream file 1/O.

The File class deals with the machine dependent files in a
machine-independent manner i.e. it is easier to write platform-
independent code that examines and manipulates files using the
File class. This class is available in the java.lang package.

The java.io.File is the central class that works with files and
directories. The instance of this class represents the name of a file
or directory on the host file system.

When a File object is created, the system doesn't check to
the existence of a corresponding file/directory. If the files exist, a
program can examine its attributes and perform various operations
on the file, such as renaming it, deleting it, reading from or writing
to it.

The constructors of the File class are shown in the table:

Constructor Description

Create File object for default directory

File(path) (usually where program is located).

Create File object for directory path given as
File(dirpath,fname) [string.

File(dir, fname) Create File object for directory.

117

Thus the statement can be written as:
File f = new File (“<filename>");

The methods that are used with the file object to get the
attribute of a corresponding file shown in the table.

Method Description
f.exists() Returns true if file exists.
f.isFile() Returns true if this is a normal file.

f.isDirectory()

true if "f" is a directory.

f.getName()

Returns name of the file or directory.

f.isHidden()

Returns true if file is hidden.

f.lastModified()

Returns time of last modification.

f.length() Returns number of bytes in file.
f.getPath() Path name.
f.delete() Deletes the file.

f.renameTo(f2)

Renames f to File f2. Returns true ff
successful.

f.createNewFile()

Creates a file and may throw|
IOException.

Whenever the data is needed to be stored, a file is used to
store the data. File is a collection of stored information that is
arranged in string, rows, columns and lines etc.
Further, we will see how to create a file. This example takes the file
name and text data for storing to the file.

For creating a new file File.createNewFile () method is used.
This method returns a boolean value true if the file is created
otherwise return false. If the mentioned file for the specified
directory is already exist then the createNewFile () method returns
the false otherwise the method creates the mentioned file and
return true.

118

Let’'s see an example that checks the existence of a specified file.
import java.io.*;

public class CreateFilel

{

public static void main(String[] args) throws IOException

{
File f;
f=new File ("myfile.txt");
if(If.exists(){
f.createNewFile();
System.out.printin("New file \"myfile.txt\" has been created
to the current directory");

}
}

First, this program checks, the specified file "myfile.txt" is
exist or not. If it does not exist then a new file is created with same
name to the current location.

Output of the Program
C:\>javac CreateFilel.java

C:\>java CreateFilel
New file "myfile.txt" has been created to the current directory

C:\>

If you try to run this program again then after checking the
existence of the file, it will not be created and you will see a
message as shown in the output.

C:\>javac CreateFilel.java

C:\>java CreateFilel
the specified file is already exist

C:\>
In Java, it is possible to set dynamic path, which is helpful for

mapping local file name with the actual path of the file using the
constructing filename path technique.

119

As seen, how a file is created to the current directory where
the program is run. Now we will see how the same program
constructs a File object from a more complicated file name, using
the static constant File.separator or File.separatorCharto specify
the file name in a platform-independent way. If we are using
Windows platform then the value of this separator is "\".

Let’'s see an example to create a file to the specified location.
import java.io.*;
public class PathFile

{

public static void main(String[] args) throws IOException

{
File f;
f=new File ("example" + File.separator + "myfile.txt");
f.createNewFile ();
System.out.printin
("New file \"myfile.txt\" has been created
to the specified location");

System.out.println ("The absolute path of the file is: "

+f.getAbsolutePath ());
}

}
Output of the program:

C:\>javac PathFile.java

C:\>java PathFile
New file "myfile.txt" has been created to the specified location
the absolute path of the file is: C:\Shubh\example\myfile.txt

C:\>

8.8 I/0 STREAMS:

Let's now see some |I/O streams that are used to perform
reading and writing operation in a file. Java supports the following
I/O file streams.

v Filelnputstream
v FileOutputStream

120

8.8.1 Filelnputstream:

This class is a subclass of Inputstream class that reads
bytes from a specified file name. The read () method of this class
reads a byte or array of bytes from the file. It returns -1 when the
end-of-fle has been reached. We typically use this class in
conjunction with a BufferedinputStream and Datalnputstream class
to read binary data. To read text data, this class is used with an
InputStreamReader and BufferedReader class. This class throws
FileNotFoundException, if the specified file is not exist. You can
use the constructor of this stream as:

Filelnputstream (File filename);

8.8.2 FileOutputStream:-

This class is a subclass of OutputStream that writes data to
a specified file name. The write () method of this class writes a byte
or array of bytes to the file. We typically use this class in
conjunction with a BufferedOutputStream and a DataOutputStream
class to write binary data. To write text, we typically use it with a
PrintWriter, BufferedWriter and an OutputStreamWriter class. You
can use the constructor of this stream as:

FileOutputstream (File filename);

8.8.3 DatalnputStream:-

This class is a type of FilterinputStream that allows you to
read binary data of Java primitive data types in a portable way. In
other words, the DatalnputStream class is used to read binary Java
primitive data types in a machine-independent way. An application
uses a DataOutputStream to write data that can later be read by a
DatalnputStream. You can use the constructor of this stream as:

DatalnputStream (FileOutputstream finp);

The following program demonstrates how contains are read from a
file.

import java.io.*;

public class ReadFile

{

public static void main(String[] args) throws IOException

121

{
File f;
f=new File("myfile.txt");
if(If.exists()&& f.length()<0)
System.out.printin("The specified file is not exist");

else{
FilelnputStream finp=new FilelnputStream(f);
byte b;
do{
b=(byte)finp.read();
System.out.print((char)b);

}
while(b!=-1);
finp.close();

Output of the Program:

C:\>javac ReadFile.java

C:\>java ReadFile
this is a text file?
C:\>

This program reads the bytes from file and displays it to the user.

Now we will learn how to write data to a file. As discussed, the
FileOutputStream class is used to write data to a file.

Let's see an example that writes the data to a file converting into
the bytes.

This program first checks the existence of the specified file. If the
file exists, the data is written to the file through the object
of the FileOutputStream class.

import java.io.*;

public class WriteFile

{

public static void main(String[] args) throws IOException

122
{

File f=new File ("textfilel.txt");
FileOutputStream fop=new FileOutputStream (f);

if (f.exists ())

String str="This data is written through the program”;
fop.write (str.getBytes ());

fop.flush ();
fop.close ();
System.out.printin ("The data has been written™);
}
else
System.out.printin ("This file is not exist");

Output of the Program

C:\>javac WriteFile.java

C:\>java WriteFile
The data has been written

C:\>

Now, you will learn how to count the availability of text lines
in the particular file. A file is read before counting lines of a
particular file. File is a collection of stored information that is
arranged in string, rows, columns and lines etc. Try it for getting the
lines through the following program

Description of program:

The following program helps you in counting lines of a
particular file. At the execution time of this program, it takes a file
name with its extension from a particular directory and checks it
using exists () method. If the file exists, it will count lines of a
particular file otherwise it will display a message “File does not
exists!”

Description of code:
v FileReader (File file):

This is the constructor of FileReader class that is reliable for
reading a character files. It constructs a new FileReader and takes
a file name that have to be read.

123

v FileNumberReader ():

This is the constructor of FileNumberReader class. It
constructs a new line-numbering reader. It reads characters and
puts into buffer. By default the numbering of line begins from '0'.
Here is the code of program:

import java.io.*;
public class NumberOfLine{
public static void main(String|[] args) {

try{

System.out.printin("Getting line number of a particular file exam
ple!E)»’ufferedReader bf = new BufferedReader(new InputStreamRea
der(System.in));

System.out.printin("Please enter file name with extension:");

String str = bf.readLine();

File file = new File(str);

if (file.exists()){

FileReader fr = new FileReader(file);

LineNumberReader In = new LineNumberReader(fr);

int count = 0O;

while (In.readLine() !'= null){

count++;

System.out.printin("Total line no: " + count);
In.close();

}

else{

System.out.printin("File does not exists!");

124
}
}

catch(IOException e){

e.printStackTrace();

}
}

Output of program:

Getting line number of a particular file example!
Please enter file name with extension:
AddTwoBigNumbers.shtml

Total line no: 58

Java provides the facility for changing a file timestamp according to
the user reliability.

Description of program:

This program helps you in changing a file timestamp or
modification time in Java. After running this program it will take a
file name and its modification date in 'dd-mm-yyyy' format. Then it
will check the given file is exist or not using exists () method. When
the file exists, this program will change the date of given file and it
will display a message "Modification is successfully!" otherwise it
will show “File does not exists!”

Description of code:
v setLastModified(long time):

This is the method that sets the last modification time of a file
or directory and returns Boolean types values either ‘true' or 'false’.
If it will return a 'true’ only when the modification is completely
successfully otherwise, it will return ‘false’. This method takes
following long type data:

v time:
This is the time that has to be modified or set.
v getTime ():

This is the method that returns the number of milliseconds in
GMT format like: 23-04-2007.

125

Here is the code of program:

import java.io.*;
import java.util.*;

import java.text.*,
public class ChangeFileDate{
public static void main(String[] args) {
try{
System.out.printin("Change file timestamp example!");

BufferedReader bf = new BufferedReader(new InputStreamRea
der(System.in));

System.out.printin("Enter file name with extension:");
String str = bf.readLine();

System.out.printin("Enter last modified date in 'dd-mm-
yyyy' format:");

String strDate = bf.readLine();
SimpleDateFormat sdf= new SimpleDateFormat("dd-MM-yyyy");
Date date = sdf.parse(strDate);
File file = new File(str);
if (file.exists()){
file.setLastModified(date.getTime());

System.out.printin("Modification is successfully!");

else{

System.out.printin("File does not exists!");

126

catch(Exception e){

e.printStackTrace();

}
}

Output of program:

Change file timestamp example!

Enter file name with extension:
StrStartWith.shtml

Enter last modified date in 'dd-mm-yyyy' format:
23-04-2007

Modification is successfully

8.9 FINDING A FILE

To find a file or directory it is very necessary to know the
path of the file or directory so that you can access it. If you know
the path then it is very easy to work on it. Suppose a situation
where a problem comes in front you where you don't know the path
of the file, then what will you do? This problem can be solved by
using a method getAbsolutePath ().The method getAbsolutePath ()
should be used where we don't know the exact path of the file.

To find an absolute path of a file, Firstly we have to make a
class GetAbsolutePath. Inside this class, define the main method.
Inside this method define a File class of java.io package. Inside the
constructor of a File class pass the name of the file whose absolute
path you want to know. Now call the method getAbsolutePath () of
the File class by the reference of File class and store it in a String
variable. Now print the string, you will get an absolute path of the
file.

In this class we have make use of the following things by
which this problem can be solved.

v' File: It is class in java.io package. It implements Comparable
and Serializable interface.

v' getAbsolutePath (): It returns the absolute path name in the
form of string.

127

Code of the program is given below:

import java.io.*;
public class GetAbsolutePath

{

public static void main(String[] args)

{

String str = args[0];

File file = new File(str);
String absolutePathOfFirstFile = file.getAbsolutePath();

System.out.printin(" The absolute path in first form is "
+ absolutePathOfFirstFile);

file = new File("Happy" + File.separatorChar+ str);
String absolutePathOfSecondFile = file.getAbsolutePath();
System.out.printin(" The absolute path is " + absolutePathOfSec
ondFile);

file = new File("Happy" + File.separator + ".." + File.separator + str);
String absolutePathOfThirdFile = file.getAbsolutePath ();
System.out.printin

(" The absolute path is” + absolutePathOfThirdFile);

}

Output of the program

Happy
The absolute path in first form is C:\Smile\Happy

The absolute path is C:\Smile\Happy\Happy
The absolute path is C:\Smile\Happy\..\Happy

8.10 SUMMARY:

In this unit, we learn that what is stream and types of stream.
We also learn the concept of input and output stream (The Java
Input/Output (1/O) is a part of java.io package). The java.io package
contains a relatively large number of classes that support input and
output operations.

128

MULTI THREADING

Unit Structure

9.1 Objective: In this lesson of Java Tutorial, you will learn...
9.2 Introduction:

9.3 Overview:

9.4 Thread Life cycle:

9.4.1 Advantages of multithreading over multi-tasking:
9.4.2 Thread Creation and simple programs:
9.4.3 Synchronized threads:

9.4.3.1 Synchronized Methods:

9.5 Summary

9.6 List of references:
9.7 Bibilography:

9.8 Model answers

9.1 OBJECTIVE:

In this lesson of Java Tutorial, you will learn...

e Thread life cycle
e How to create thread
e Advantages of threading

9.2 INTRODUCTION

A thread is defined as a separate stream of implementation
that takes place simultaneously with and independently of
everything else that might be happening. It does not have an event
loop. A thread runs autonomously of anything else happening in the
computer. With threads the other tasks that don't get stuck in the
loop can continue processing without waiting for the stuck task to
terminate. A thread is a coding that doesn't affect the architecture
of an application. Threading is equally separate the computer's
power among different tasks.

9.3 OVERVIEW:

Threading concept is very important in Java Programing
language. A thread is a sequential path of code execution within a

129

program. And each thread has its own local variables, program
counter and lifetime.

In Java, an object of the Thread class can represent a
thread. Thread can be implemented through any one of two ways:

Using threads in Java will enable greater flexibility to
programmers looking for that extra edge in their programs. The
simplicity of creating, configuring and running threads lets Java
programmers devise portable and powerful applets/applications
that cannot be made in other third-generation languages. Threads
allow any program to perform multiple tasks at once. In an Internet-
aware language such as Java, this is a very important tool.

9.4 THREAD LIFE CYCLE:

When you are programming with threads, understanding the
life cycle of thread is very valuable. While a thread is alive, it is in
one of several states. By invoking start () method, it doesn’'t mean
that the thread has access to CPU and start executing straight
away. Several factors determine how it will proceed.

Different states of a thread are:

Programmer
Scheduler
Thread
Runnable
A\ 4
Newly v
Created
Running Blocked
\ 4
Start v
Thread -
Dead

Fig 9.1: Thread Life cycle

130

New state — After the construction of Thread instance the
thread is in this state but before the start() method
invocation. At this point, the thread is considered not alive.

Runnable (Ready-to-run) state — A thread start its life from
Runnable state. A thread first enters runnable state after the
invoking of start() method but a thread can come again to
this state after either running, waiting, sleeping or coming
back from blocked state also. On this state a thread is
waiting for a turn on the processor.

Running state — A thread is in running state that means the
thread is presently executing. There are numerous ways to
enter in Runnable state but there is only one way to enter in
Running state: the scheduler select a thread from runnable
pool.

Dead state — A thread can be considered dead when its
run() method completes. If any thread comes on this state
that means it cannot ever run again.

Blocked - A thread can enter in this state because of waiting
the resources that are hold by another thread.

9.4.1 Advantages of multithreading over multi-tasking:

1.
2.
3
4.

5.

Reduces the computation time.

Improves performance of an application.

Threads distribute the same address space so it saves the
memory.

Context switching between threads is usually less costly than
between processes.

Cost of communication between threads is comparatively low.

9.4.2 Thread Creation and simple programs:

In Java, an object of the Thread class can represent a

thread. Thread can be implemented through any one of two ways:

Extending the java.lang.Thread Class
Implementing the java.lang.Runnable Interface

131

Thread
Extends Implements
v
v A 4
Thread Runnable
(class) Override (interface)
A\ 4 v
run()
method

Fig 9.3: Creation of thread
« Extending the java.lang.Thread Class

Syntax: class MyThread extends Thread

{
}

« Implementing the java.lang.Runnable Interface

Syntax: MyThread implements Runnable

{
}

e After declaration of thread class, we have to override run()
method in class.
e Now we can create object of thread if needed.

In short we have to follow following these steps:

1. Extend the java.lang.Thread Class.

2. Override the run() method in the subclass from the Thread
class to define the code executed by the thread.

3. Create an instance of this subclass. This subclass may call a
Thread class constructor by subclass constructor.

4. Invoke the start() method on the instance of the class to
make the thread eligible for running.

132

The following program demonstrates a single thread creation
extending the "Thread" Class:

class MyThread extends Thread

{
String s=null;
MyThread(String s1)
{
s=sl,
start();
}
public void run()
{
System.out.printin(s);
}
}
public class RunThread
{
public static void main(String args|])
{
MyThread m1=new MyThread("Thread started....");
}
}

Output of the Program is:
C:\>javac RunThread.java
C:\>java RunThread

Thread started....

133

II. Implementing the java.lang.Runnable Interface

The procedure for creating threads by implementing the Runnable
Interface is as follows:

1. A Class implements the Runnable Interface, override the
run() method to define the code executed by thread. An
object of this class is Runnable Object.

2. Create an object of Thread Class by passing a Runnable
object as argument.

3. Invoke the start() method on the instance of the Thread
class.

The following program demonstrates the thread creation implenting
the Runnable interface:

class Thrl implements Runnablef{
Thread t;
String s=null;

Thr1(String s1){
s=s1;

t=new Thread(this);
t.start();

}
public void run(){
System.out.printin(s);

}
public class RunableThread{

public static void main(String args[]){
Thrl m1=new Thrl("Thread started....");

}
}

Output:

C:\>javac RunableThread.java
C:\>java RunableThread
Thread started....

However, this program returns the output same as of the output
generated through the previous program.

134

There are two reasons for implementing a Runnable interface
preferable to extending the Thread Class:

1. If you extend the Thread Class, that means that subclass
cannot extend any other Class, but if you implement
Runnable interface then you can do this.

2. The class implementing the Runnable interface can avoid
the full overhead of Thread class which can be excessive.

join() & isAlive() methods:

The following program demonstrates the join() & isAlive() methods:

class DemoAlive extends Thread {
int value;
public DemoAlive(String str)
{
super(str);
value=0;
start();
}
public void run()
{
try
{

while (value < 5) {
System.out.printin(getName() + ": " + (value++));
Thread.sleep(250);
}
} catch (Exception e) {}
System.out.printin("Exit from thread: " + getName());

}

public class DemoJoin

{

public static void main(String[] args)

{

DemoAlive da = new DemoAlive("Thread a");

135

DemoAlive db = new DemoAlive("Thread b");

try
{

System.out.printin("Wait for the child threads to finish.");
da.join();
if ('da.isAlive())
System.out.printin("Thread A not alive.");
db.join();
if ('db.isAlive())
System.out.printin("Thread B not alive.");
} catch (Exception e) { }
System.out.printin("Exit from Main Thread.");

}
Output:

C:\>javac DemoJoin.java
C:\>java DemoJoin

Wait for the child threads to finish.
Thread a: 0

Thread b: 0
Thread a: 1
Thread b: 1
Thread a: 2
Thread b: 2
Thread a: 3
Thread b: 3
Thread a: 4
Thread b: 4

Exit from thread: Thread a
Thread A not alive.

Exit from thread: Thread b
Thread B not alive.

Exit from Main Thread.

136

9.4.3 Synchronized threads:

In Java, the threads are executed separately to each other.
These types of threads are called as asynchronous threads. But
there are two problems may be occurs with asynchronous threads.

e« Two or more threads share the similar resource (variable or
method) while only one of them can access the resource at
one time.

« If the producer and the consumer are sharing the same kind
of data in a program then either producer may make the data
faster or consumer may retrieve an order of data and
process it without its existing.

Suppose, we have created two methods as increment() and
decrement(). which increases or decreases value of the variable
"count” by 1 respectively shown as:

public void increment() {
count++; }

When the two threads are executed to access these methods (one
for increment(),another for decrement()) then both will distribute
the variable "count". in that case, we can't be sure that what value
will be returned of variable "count”.

We can see this problem in the diagram shown below:
Start

|

Thread 1 Thread 2

v

Shared

|

Variable or method

To avoid this problem, Java uses monitor also known as
“semaphore” to prevent data from being corrupted by multiple
threads by a keyword synchronized to coordinate them and
intercommunicate to each other. It is basically a mechanism which
allows two or more threads to share all the available resources in a
sequential manner. Java's synchronized is used to ensure that only

137

one thread is in a critical region. Critical region is a lock area where
only one thread is run (or lock) at a time. Once the thread is in its
critical section, no other thread can enter to that critical region. In
that case, another thread will has to wait until the current thread
leaves its critical section.

General form of the synchronized statement is as:
synchronized(object) {

Il statements to be synchronized

}

Lock:

Lock term refers to the access approved to a particular
thread that can access the shared resources. At any given time,
only one thread can hold the lock and thereby have access to the
shared resource. Every object in Java has build-in lock that only
comes in action when the object has synchronized method code.
By associating a shared resource with a Java object and its lock,
the object can act as a guard, ensuring synchronized access to the
resource. Only one thread at a time can access the shared
resource guarded by the object lock.

Since there is one lock per object, if one thread has
acquired the lock, no other thread can acquire the lock until the lock
is not released by first thread. Acquire the lock means the thread
currently in synchronized method and released the lock means
exits the synchronized method.

Remember the following points related to lock and synchronization:

e Only methods (or blocks) can be synchronized, Classes and
variable cannot be synchronized.

o Each object has just one lock.

« All methods in a class need not to be coordinated. A class
can have both synchronized and non-synchronized methods.

o If two threads wants to execute a synchronized method in a
class, and both threads are using the similar instance of the
class to invoke the method then only one thread can execute
the method at a time.

e« If a class has both synchronized and non-synchronized
methods, multiple threads can still access the class's non-
synchronized methods. If you have methods that don't

138

access the data you're trying to protect, then you don't need
to synchronize them. Synchronization can cause a hit in
several cases (or even deadlock if used incorrectly), so you
should be careful not to overuse it.

o If athread goes to sleep, it holds any locks it has—it doesn't
let go them.

e A thread can obtain more than one lock. For example, a
thread can enter a synchronized method, thus acquiring a
lock, and then directly invoke a synchronized method on a
different object, thus acquiring that lock as well. As the stack
unwinds, locks are unrestricted again.

e You can synchronize a block of code rather than a method.
« Constructors cannot be synchronized
9.4.3.1 Synchronized Methods:

Any method is specified with the keyword synchronized is
only executed by one thread at a time. If any thread wants to
implement the synchronized method, firstly it has to obtain the
objects lock. If the lock is already held by another thread, then
calling thread has to wait.

Synchronized methods are useful in those situations where
methods are executed concurrently, so that these can be
intercommunicate control the state of an object in ways that can
corrupt the state if. Stack implementations usually define the two
operations push and pop of elements as synchronized, that's why
pushing and popping are mutually exclusive process. For Example
- if several threads were sharing a stack, if one thread is popping
the element on the stack then another thread would not be able to
pushing the element on the stack.

The following program demonstrates the synchronized method:

class Demo extends Thread{
static String msg[]={"This", "is", "a", "synchronized", "variable"};
Share(String threadname){
super(threadname);
}
public void run(){
display(getName());

public synchronized void display(String threadN){
for(int i=0;i<=4;i++)

139

System.out.printin(threadN+msg([i]);
try{
this.sleep(1000);

}catch(Exception e){}

}
public class SynThread1l {

public static void main(String[] args) {
Share t1=new Share("Thread One: ");
t1.start();
Share t2=new Share("Thread Two: ");
t2.start();

}
}
Output of the program is:

Thread One: variable
Thread Two: This

Thread Two: is

Thread two: a

Thread Two: synchronized
Thread Two: variable
C:\nisha>javac SynThread.java
C:\nisha>java SynThread
Thread One: This

Thread One: is

Thread One: a

Thread One: synchronized
Thread One: variable
Thread Two: This

Thread Two: is

Thread two: a

Thread Two: synchronized

Thread Two: variable

9.5 SUMMARY:

A thread executes a series of instructions. Every line of code
that is executed is done so by a thread. In Java, the threads are
executed independently to each other. Multithreading is vital to
Java for two main reasons. First, multithreading enables you to
write very efficient programs because it lets you utilize the idle time
that is present in most programs. Most I/O devices, whether they be
network ports, disk drives, or the keyboard, are much slower than
the CPU. Thus, a program will often use a majority of its execution
time waiting to send or receive information to or from a device. By
using multithreading, your program can execute another task during

140

this idle time. For example, while one part of your program is
sending a file over the Internet, another part can be
handling user interaction (such as mouse clicks or button presses),
and still another can be buffering the next block of data to send.

The second reason that multithreading is important to Java
relates to Java’'s eventhandling model. A program (such as an
applet) must respond speedily to an event and then return. An
event handler must not retain control of the CPU for an extended
period of time.

9.6 LIST OF REFERENCES

1. Java 2: The Complete Reference, Fifth Edition, Herbert Schildt,
Tata McGraw Hill.

2. An Introduction to Object oriented Programming with JAVA, C
THOMAS WU

9.7 BIBILOGRAPHY

http://www.javaworld.com/javaworld/jw-04-1996/jw-04-
threads.html?page=3

http://www.janeqg.ca/scjp/threads/overview.html

9.8 MODEL ANSWERS

1) What are the two ways to create the thread?
Ans: 1. by implementing Runnable
2. by extending Thread
2) Explain the advantages of threading?
Ans: Advantages of multithreading over multi-tasking:

1. Reduces the computation time.

2. Improves performance of an application.

3. Threads distribute the same address space so it saves the
memory.

4. Context switching between threads is usually less costly
than between processes.

5. Cost of communication between threads is comparatively
low.

141

3) What are synchronized methods and synchronized statements?

Ans : Synchronized methods are methods that are used to control
access to an object. A thread only executes a synchronized method
after it has acquired the lock for the method's object or class.
Synchronized statements are similar to synchronized methods. A
synchronized statement can only be executed after a thread has
acquired the lock for the object or class referenced in the
synchronized statement.

4) Explain the states of a tread?
Ans : There are five states:

0O1New state — After the construction of Thread instance the thread
is in this state but before the start() method invocation. At this point,
the thread is considered not alive.

1 Runnable (Ready-to-run) state — A thread start its life from
Runnable state. A thread first enters runnable state after the
invoking of start() method but a thread can come again to this
state after either running, waiting, sleeping or coming back from
blocked state also. On this state a thread is waiting for a turn on

the processor.

2 Running state — A thread is in running state that means the
thread is presently executing. There are numerous ways to
enter in Runnable state but there is only one way to enter in
Running state: the scheduler select a thread from runnable
pool.

3 Dead state — A thread can be considered dead when its run()
method completes. If any thread comes on this state that
means it cannot ever run again.

4 Blocked - A thread can enter in this state because of waiting the
resources that are hold by another thread.

5) What is a thread?

Ans: In Java the Thread class represents a single independent path
of execution in a Java Virtual Machine. When you run a Java
program it implicitly starts a single thread of execution. The Thread
class enables programmers to create additional threads and set
them running. A number of threads may run in parallel, but only one
is actively executed at a given moment.

The Java runtime system uses fairly complex thread
scheduling mechanisms to coordinate the execution of threads, but

142

this does not require privileged knowledge or detail level
intervention by programmers. Programmers can manage the high
level creation, initiation and distribution of tasks amongst threads
through simple API methods.

The example below shows the simplest approach to thread creation
and task execution; construct a new Thread with a Runnable
argument and start it.

6) How to create one or more threads in Java?

Ans: program

public class Demo implements Runnable

{

public static void main(String args[]) throws Throwable
{

Demo objl = new Demo();

Demo obj2 = new Demo();

new Thread(objl).start();

new Thread(obj2).start();

// main thread is ending here,

/I Thread-0 and Thread-1 continue to run.
}
public void run()
{

try {

for (int i=0; i<5; i++) {
System.out.printin("thread "
+Thread.currentThread().getName()+" step "+i);

Thread.sleep(500);

143
}

} catch (Throwable t) { }

}

Output:
C:\Java\jdk1.5.0_01\bin>java Demo
thread Thread-0 step O
thread Thread-1 step O
thread Thread-0 step 1
thread Thread-1 step 1
thread Thread-0 step 2
thread Thread-1 step 2
thread Thread-0 step 3
thread Thread-1 step 3
thread Thread-0 step 4
thread Thread-1 step 4
C:\Java\jdk1.5.0_01\bin>
7) Implementation of the multithreads by extending Thread Class.
Ans :
class Thrl extends Thread{
Thr1(String s){
super(s);
start();

}
public void run(){

144
for(int i=0;i<7;i++){
System.out.printin("Name of thread:"
+Thread.currentThread().getName());
try{
Thread.sleep(1000);

}catch(Exception e){}

public class Demo{
public static void main(String args[]){
System.out.printin("Thread Name :"
+Thread.currentThread().getName());
Thrl ml=new Thr1("Thread 1");

Thrl m2=new Thr1("Thread 2");

}
Output:

C:\Java\jdk1.5.0_01\bin>java Demo
Thread Name :main

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread: Thread 1

Name of thread: Thread 2

Name of thread: Thread 1

Name of thread:Thread 2

Name of thread: Thread 1

Name of thread: Thread 2

Name of thread:Thread 1

Name of thread:Thread 2

Name of thread:Thread 1

Name of thread: Thread 2

145

146

10

APPLETS

Unit Structure

10.1 Introduction to Applet

10.2 Applet vs Application

10.3 Applet class

10.4 Advantages of Applet

10.5 Applet Lifecycle

10.6 My First Applet

10.7 Applettag

10.8 Passing Parameters to Applet
10.9 Types of Applets

10.10 Examples

10.1 INTRODUCTION TO APPLET

There are two kinds of Java programs, applications (also
called stand-alone programs) and Applets. An Applet is a small
Internet-based program that has the Graphical User Interface
(GUI), written in the Java programming language.

Applets are designed to run inside a web browser or in
applet viewer to facilitate the user to animate the graphics, play
sound, and design the GUI components such as text box, button,
and radio button. When applet arrives on the client, it has limited
access to resources, so that it can produce arbitary multimedia user
interface and run complex computation without introducing the risk
of viruses or breaching data integrity.

To create an applet, we extend the “java.applet.Applet” class
And by overriding the methods of java.awt.Applet, new functionality
can be placed into web pages.

Applets are compiled using javac compiler and it can be
executed by using an appletviewer or by embedding the class file in
the HTML (Hyper Text Markup Languege) file.

147

10.2 APPLET VS APPLICATION

e Applets as previously described, are the small programs
while applications are larger programs.

e Applets don't have the main method while in an application
execution starts with the main method.

e Applets are designed just for handling the client site
problems. while the java applications are designed to work
with the client as well as server.

e Applications are designed to exists in a secure area. while
the applets are typically used.

e Applications are not too small to embed into a html page so
that the user can view the application in your browser. On
the other hand applet have the accessibility criteria of the
resources.

10.3 APPLET CLASS

The java.applet package is the smallest package in Java
API(Application Programming Interface). The Applet class is the
only class in the package. The Applet class has many methods that
are used to display images, play audio files etc but it has no main()
method. Some of them were explained below that give you the
knowledge about Applets and their behavior.

init() : This method is used for whatever initializations are needed
for your applet. Applets can have a default constructor, but it
is better to perform all initializations in the init method
instead of the default constructor.

start() :This method is automatically called after Java calls the init
method. If this method is overwritten, code that needs to be
executed every time that the user visits the browser page
that contains this applet.

stop() : This method is automatically called when the user moves
off the page where the applet sits. If your applet doesn't
perform animation, play audio files, or perform calculations in
a thread, you don't usually need to use this method.

destroy(): Java calls this method when the browser shuts down.

148

10.4 ADVANTAGES OF APPLET

Following are the advantages of a Java Applet:

The most important feature of an Applet is, It is truely
platform independent so there is no need of making any
changes in the code for different platform i.e. it is simple to
make it work on Linux, Windows and Mac OS i.e. to make it
cross platform.

The same applet can work on "all" installed versions of Java
at the same time, rather than just the latest plug-in version
only.

It can move the work from the server to the client, making a
web solution more scalable with the number of users/clients.

The applet naturally supports the changing user state like
figure positions on the chessboard.

Applets improves with use: after a first applet is run, the JVM
is already running and starts quickly.

Applets can be used to provide dynamic user-interfaces and
a variety of graphical effects for web pages.

10.5 APPLET LIFECYCLE

Every java Applet inherits a set of default behaviours from

the Applet class. As a result, when an applet is loaded it undergoes
a series of changes in its state. Following are the states in applets
lifecycle.

1) Born or Initialisation state:

An applet begins its life when the web browser loads its

classes and calls its init() method. This method is called exactly
once in Applets lifecycle and is used to read applet parameters.
Thus, in the init() method one should provide initialization code
such as the initialization of variables.

Eg.

public void init()
{

}

/linitialisation

149

2) Running State:

Once the initialization is complete, the web browser will call
the start() method in the applet. This method must called atleat
once in the Applets lifecycle as the start() method can also be
called if the Applet is in “Stoped” state. At this point the user can
begin interacting with the applet.

Eg. public void start()
{

}
3) Stopped State:

/ICode

The web browser will call the Applets stop() method, if the
user moved to another web page while the applet was executing.
So that the applet can take a breather while the user goes off and
explores the web some more. The stop() method is called atleast
once in Applets Lifecycle.

Eg. publc void stop()
{

}

4) Dead State:

/ICode

Finally, if the user decides to quit the web browser, the web
browser will free up system resources by killing the applet before it
closes. To do so, it will call the applets destroy() method. One can
override destroy() to perform one-time tasks upon program
completion. for example, cleaning up threads which were started in
the init() method.

Eg. public void destroy()
{

}

Note: If the user returns to the applet, the web browser will simply
call the applet's start() method again and the user will be back into
the program.

/l Code

5) Display State :

Applet moves to the display state whenever it has to perform
the output operations on the screen. This happens immediately

150

after the applet enters into the running state. The paint() method is
called to accomplish this task.

Eg. public void paint(Graphics g)
{

}

One can show Lifecycle of an Applet Graphically as follows:

Initialisatoin

start()
v stop()

[Running state

/[Display Statements

A 4

A

Stopped State }

J N\

start()

destroy()
A 4

[Dead State }

10.6 MY FIRST APPLET

The following example is made simple enough to illustrate
the essential use of Java applets through its java.applet package.

Example.

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet

{
public void paint(Graphics g)
{
g.drawString("My First Applet",40,40);
}
}

e Save the file as SimpleApplet.java
e Compile the file using javac SimpleApplet.java

151

Here is the illustration of the above example,

In the first line we imorts the Abstract Window Toolkit(AWT)
classes as Applet interact with the user through the AWT,
not through the console —based I/O classes. The AWT
contains support for a window based graphical interface.

In the second line we import the Applet package, which
contains the class “Applet”. As every applet that we create is
the subclass of Applet.

The next line declares the class SimpleApplet. This class
must be declared in public, because it will be accessed by
code that is outside the program.

Inside simpleApplet, paint() method is declared. This method
is defined by the AWT and must be overridden by the Applet.
Method paint() is called each time that the applet must
redisplay its output.

This paint() method has parameter of type *
Graphics”. This parameter contains the graphics context,
which describes the graphics environment in which the
applet is running. This context is used whenever output to
the applet is required.

Inside paint() method is a call to drawstring(), which is a
member of the Graphics class. This method output a String
beginning at specified X, Y locations.

How to run an Applet?

There are two ways in which one can run an applet, as
follows

1) Executing the applet within a java-compatible web
browser.

2) Using an applet viewer, such as the standard SDK
tool, “appletviewer”. An applet viewer executes your
applet in a window. This is generally the fastest and
easiest way to test your applet.

To execute an applet in a web browser, you need to write a
short HTML text file that contains the appropriate APPLET
tag.

For above example it is
<html>

152

<body>

<applet code="SimpleApplet.class" width=200 height=100>
</applet>

</body>

</html>

e Save this code in text file with extension .html say
Myapplet.html.

e Compile the file using javac SimpleApplet.java

e On successful compilation of SimpleApplet.java file, execute
the this file using appletviewer Myapplet.html or just open
this html file dirctly.

The output of above example appears as shown in the following
figure:

OR

2 C:\Program Files\avaljdk1.5.0bi... [[B]X]

Fle Edt View Favortes Lnks @+ Gk

2 Applet Viewer:... E“EJEI

Applet

A Simple Applet
A Simple Applet

Applet stared.

Insted of creating different text file for html code one can write
above program as follows

import java.awt.*;
import java.applet.*;

[* <applet code="SimpleApplet" width=200 height=100>
</applet>
*/

public class SimpleApplet extends Applet
{
public void paint(Graphics g)

{
g.drawString("My First Applet",40,40);

153

Save the file as SimpleApplet.java
Compile the file using javac SimpleApplet.java

On successful compilation, execute the this file using
appletviewer SimpleApplet.java

The output remains same.

Building an applet code:

Applet code uses the series of two classes, namely Applet
and Graphics from java class library.

Applet class which is contained in the java.applet package
provides life and behaviour to the applet through its methods
such as init(), start(), and paint().

When an applet is loaded, java automatically calls a series of
applet class methods for starting, running and stopping the
applet code.

The applet class therefore maintains the lifecycle of an
applet.

The paint() method of the applet class, when it is called,
actually display the rusult of applet code on the screen.

The output may be text, graphics or sound.

The paint() method, which requires a Graphics object as an
argument, is defined as follows:

public void paint(Graphics Q)

This requires that the applet code imports the java.awt
package that contains the Graphics class.

All output operations of an applet are performed using the
methods defined in the Graphics class.

10.7

APPLET TAG

The Applet tag is used to start an applet from both HTML

document and form applet viewer.

An applet viewer will execute each Applet tag that it finds in

a separate window, while web browsers like Netscape Navigator,

154

Internet Explorer and HotJava will allow many applets in a single

page.

The <applet....> tag included in the body section of HTML file

supplies the name of the applet to be loaded and tells the browser
how much space the applet ruquires

The synatax for the standard Applet tag is as follows

<applet[codebase=codebaseURL] code="Applet file”

>

[ALT="alternative text]
[name=AppletinstanceName]
Width=pixels height= pixels
[align= alignment]

[<param name="Attributename” value ="Attribute value”]
[<param name="Attributename” value ="Attribute value”]

[HTML displayed in the absence of java]
</applet>

Here is meaning of each peice of above code

Codebase: Codebase is an optional attribute that specifies
the base URL of the applet code, which is the directory that
will be searched for te applet’s executable class file. The
HTML document’s URL directory is used as the CODEBASE
if this attribute is not specified. The CODEBASE if this
attribute is not specified. The CODEBASE does not have to
be on the host from which the HTML document was read.

Code: code is required attribute that gives the name of the
file containing the applets compiled .class file. This file is
relative t the code base URL of the applet , which is the
directory that the HTML file whs in or th edirectory indicated
by the CODEBASE if set.

ALT : The ALT tag is an optional attribute used to specify a
short text message that should be displayed if browser
understand the APPLET tag but cant currently run java
applet.

Name: Name is an optional attribute used to specify a name
for the applet instance. Applets must be named in order for
other applets on the same page to find them by name and
communicate with them. To obtain an applet by name, use
getAppet(), which is defined by the AppletContext interface.

155

e Param name and value : The PARAM tag allows us to
specify applet specific arguments in an HTML page. Applets
access their attributes with the getParameter() method.

10.8 PASSING PARAMETERS TO APPLET

One can supply user-defined parameters to an applet using
<param.....> tag. Each <param....> tag has a name attribute such
as color,and a value attribute such as red. Inside the applet code,
the applet can refer to that parameter by name to find its value. For
e.g. the color of the text can be changed to red by an applet using a
<param...> tag as follows

<applet....>
<param=color value = “red”>
</applet>

Similarly we can change the text to be displayed by an
applet by supplying new text to the applet through a <param....>tag
as shown below.

<param name=text value = “xyz” >

Passing a parameters to an applet is similar to passing
parameters to main() method using command line arguments. To
set up and handle parameters, we need to do two things.

1) Include appropriate <param....> tags in the HTML
document.

2) Provide code in the applet to pass these paraments.

Parameters are passed to an applet when it is loaded. We
can define the init() method in the applet to get hold of the
parameters defined in the <param> tags. This is done using the
getparameter() method, which takes one string argument
representing the name of the parameter and returns a string
containing the value of that parameter.

10.9 TYPES OF APPLETS

As we can embed applet into web pages in two ways i.e. by
writting our own applet and then embed into web pages. Or by
downloading it from a remote computer system and then embed it
into webpage.

An applet developed locally and stored in a local system is
known as local applet. Therefore when webpage is trying to find
local applet it doen not need the internet connection.

156

A remote applte is that which is developed by some one
else and stored on a remote computer connected to the internet. If
our system is connected to the internet then we can download it
from remote computer and run it. In order to locate and load a
remote applet, we must know the applet’'s address on the web. This
address is known as Uniform Resourse locator(URL) and must be
specified in applet’s document.

10.10 EXAMPLES

Example 1 // Example to illustrate Applet Lifecycle

import java.awt.*;
import java.applet.*;
[* <applet code="AppletTest" width=200 height= 100>

</applet>
*/
public class AppletTest extends Applet
{
public void init()
{
System.out.printin("Applet Initialised...");
setBackground(Color.cyan);
}
public void start()
{
System.out.printin("Applet Started....");
}
public void stop()
{
System.out.printin("Applet Stoppen....");
}
public void destroy()
{
System.out.printin("Applet Destryoed....");
}
public void paint(Graphics g)
{
g.drawString("Applet Text",200,400);
showStatus("This is shown in Status.");
}
}

e Save the file as AppletTest. Java

e Compile the file using javac AppletTest.java

e On successful compilation, execute the file using
appletviewer AppletTest.java

157

The output appers as shown in following figure :

£ Applet Viewer:... E]@B|

Applet

This is shawn in Status.

Example 2 // Example to illustrate Applet Lifecycle

import java.awt.*;
import java.applet.*;
[* <applet code="Sample" width=200 height= 100>

</applet>
*/
public class Sample extends Applet
{
String msg;
public void init()
{
setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init()-";
}
public void start()
{
msg += "Inside start()-";
}
public void paint(Graphics g)
{
msg +="Inside paint()-";
g.drawString(msg,10,30);
showStatus("This is shown at status");
}
}

e Save the file as Sample. Java

e Compile the file using javac Sample.java

e On successful compilation, execute the file
appletviewer Sample.java

using

158

The output appers as shown in following figure :

£ Applet Viewer: Sa... E]@@

Anplet

Inzide initd-Inside start-Inside paintd-

This is shown at status

Example 3 // Example for passing parameters

import java.awt.*;
import java.applet.*;
[* <applet code="ParamDemo" width=300 height= 80>
<param name=fontName value=Courier>
<param name=fontSize value=14>
<param name=leading value = 2>
<param name=accountEnabled value= true>
</applet>
*/

public class ParamDemo extends Applet
{
String fontName;
int fontSize;
float leading;
boolean active;
public void start()
{
String param,;
fontName=getParameter("fontName");
if(fontName==null)
fontName= "Not Found";
param=getParameter("fontSize");
try
{

if(param!=null)
fontSize=Integer.parselnt(param);

159

else
fontSize=0;

}
catch(NumberFormatException €)
{

fontSize=-1,

}
param=getParameter("leading");
try

{

if(param!=null)
leading=Float.valueOf(param).floatValue();
else

leading=0;

}
catch(NumberFormatException e)
{

leading=0;
}

param=getParameter("accountEnabled");
if (param!=null)
active =Boolean.valueOf(param).booleanValue();

}

public void paint(Graphics g)

{
g.drawString("Font Name." + fontName,0,10);
g.drawString("Font Size." + fontSize,0,26);
g.drawString("Leading." + leading,0,42);
g.drawString("Account Active." + active,0,58);

}

}

e Save the file as ParamDemo. Java
e Compile the file using javac ParamDemo.java

e On successful compilation, execute the file wusing
appletviewer ParamDemo.java

160

The output appers as shown in following figure :

& Applet Viewer: ParamDemo E]@@

Applet
Font Hame. Courier

Account Active true

Applet started.

Example 4 // Example for getDocumentBase() & getCodeBase()

import java.awt.*;

import java.applet.*;

import java.net.*;

[* <applet code="Bases" width=300 height= 50>
</applet>

*/

public class Bases extends Applet
{
public void paint(Graphics g)
{
String msg;
URL url= getCodeBase();
msg= "Code Base:" +url.toString();
g.drawString(msg,10,20);
url= getDocumentBase();
msg= "Document Base:" +url.toString();
g.drawString(msg,10,40);

e Save the file as Bases. Java
e Compile the file using javac Bases.java

e On successful compilation, execute the file using
appletviewer Bases.java

161

The output appers as shown in following figure :

£ Applet Viewer: Bases

Applet

Code BasefiledCUProgram % 20Filesidavaiidkl 5. 0ibins
Document BasefiledzIProgram%20Filesidavalidkl 5. 0/biniBases java

Applet started.

162

11

GRAPHICAL USER INTERFACE (GUI)

Unit Structure

11.1 Introduction

11.2 GUI Components

11.3 Interface and Classes of AWT Package
11.3.1 Labels

11.3.2 Buttons
11.3.3 Check Boxes
11.3.4 Radio Button
11.3.5 Text Area
11.3.6 Text Field
11.3.7 Scrollbar
11.3.8 Panels

114 Layout managers

11.5 Methods of AWT

11.1 INTRODUCTION

A type of user interface item that allows people to interact
with programs in more ways than typing such as computers and
many hand-held devices such as mobile phones is called a
graphical user interface (GUI) . A GUI offers graphical icons, and
visual indicators, as opposed to text-based interfaces. This helps to
develop more efficient programs that are easy to work with. The
user can interact with the application without any problem.

The GUI application is created in three steps. These are:

» Add components to Container objects to make your GUI.

» Then you need to setup event handlers for the user
interaction with GUI.

> Explicitly display the GUI for application.

11.2 GUI COMPONENTS

It is visual object and the user interacts with this object via a
mouse or a keyboard. Components included, can be actually seen

163

on the screen, such as, buttons, labels etc. Any operation that is
common to all GUI components are found in class Component.
Different components are available in the Java AWT (Abstract
Window Toolkit)package for developing user interface for your
program.

A class library is provided by the Java programming
language which is known as Abstract Window Toolkit (AWT). The
Abstract Window Toolkit (AWT) contains several graphical widgets
which can be added and positioned to the display area with a layout
manager.

AWT is a powerful concept in JAVA. AWT is basically used to
develop for GUI application building. AWT is platform dependant.
That means your .class file after the program compilation is
platform independent but the look of your GUI application is
platform dependant. AWT copies GUI component from local
macines operating system. That means your applications look will
differ in MAC operating system, as you have seen in WINDOWS
operating system.

11.3 INTERFACE AND CLASSES OF AWT PACKAGE:

Some of the Classes Interfaces of AWT package are
explained below

Interfaces Descriptions

ActionEvent

This interface is used for handling events.

Adjustable This interface takes numeric value to
adjust within the bounded range.
Composite This interface defines methods to draw a|

graphical area. It combines a shape, text,
or image etc.

CompositeContext

This interface allows the existence of
several contexts simultaneously for &
single composite object. It handles the
state of the operations.

ltemSelectable

This interface is used for maintaining zero
or more selection for items from the item
list.

164

KeyEventDispatcher

The KeyEventDispatcher implements the
current KeyboardFocusManager and it
receives KeyEvents before dispatching
their targets.

KeyEventPostProcessor

This interface also implements the current|
KeyboardFocusManager. The
KeyboardFocusManager receives the
KeyEvents after that dispatching their
targets.

LayoutManager It defines the interface class and it has
layout containers.
LayoutManager?2 This is the interface extends from the

LayoutManager and is subinterface of
that.

MenuContainer

This interface has all menu containers.

Paint

This interface is used to color pattern. It
used for the Graphics2D operations.

PaintContext

This interface also used the color pattern.
It provides an important color for the
Graphics2D operation and uses the
ColorModel.

PaintGraphics

This interface provides print a graphics
context for a page.

Shape This interface used for represent the
geometric shapes.

Stroke This interface allows the Graphics2D
object and contains the shapes to outline
or stylistic representation of outline.

Transparency This interface defines the transparency

mode for implementing classes.

165

Class hierarchy of AWT classes can be given as follows.

Object

compone

Vo

| Button | Canvas | CheckBox | Choice | Container | Label | List | Scrollbar |

v

v v

Some of the AWT components are explained below.

11.3.1 Labels:

This is the simplest component of Java Abstract Window
Toolkit. This component is generally used to show the text or string
in your application and label never perform any type of action.

