
5
Class: SE Computer Unit:IV 1

Sub:PPL

INTRODUCTION TO JAVA

Unit Structure

1.1 Introduction
1.2 Basic concepts of OOPs
1.3 Java History
1.4 Java Feature
1.5 Comparison in Java and C++
1.6 Java Virtual Machine
1.7 Java Environment
1.8 Program
1.9 Summary

1.1 INTRODUCTION:

Java is a high-level, third generation programming language,
like C, FORTRAN, Smalltalk, Perl, and many others. You can use
Java to write computer applications that play games, store data or
do any of the thousands of other things computer software can do.
Compared to other programming languages, Java is most similar to
C. However although Java shares much of C's syntax, it is not C.
Knowing how to program in C or, better yet, C++, will certainly help
you to learn Java more quickly, but you don't need to know C to
learn Java. A Java compiler won't compile C code, and most large C
programs need to be changed substantially before they can become
Java programs. What's most special about Java in relation to other
programming languages is that it lets you write special programs
called applets that can be downloaded from the Internet and played
safely within a web browser. Java language is called as an Object-
Oriented Programming language and before begining for Java, we
have to learn the concept of OOPs(Object-Oriented Programming).

1.2 BASIC CONCEPT OF OOPS (OBJECT-ORIENTED

PROGRAMMING):

There are some basic concepts of object oriented programming as
follows:

1. Object
2. Class
3. Data abstraction

6

4. Data encapsulation
5. Inheritance
6. Polymorphism
7. Dynamic binding

1. Object
Objects are important runtime entities in object oriented

method. They may characterize a location, a bank account, and a
table of data or any entry that the program must handle. For
example:

Object: STUDENT
DATA

Name
Address
Marks

METHODS

Total ()
Average ()

Fig.1.1 Representation of an object “STUDENT”

Each object holds data and code to operate the data. Object can
interact without having to identify the details of each other’s data or
code. It is sufficient to identify the type of message received and the
type of reply returned by the objects. Another example of object is
CAR

Object: CAR
DATA

Colour
Cost

METHODS

LockIt ()
DriveIt ()

Fig.1.2 Representation of object “CAR”

Fig.1.1 and Fig.1.2 shows actual representation of object.

2. Classes
A class is a set of objects with similar properties (attributes),

common behaviour (operations), and common link to other objects.

7

The complete set of data and code of an object can be made a user
defined data type with the help of class.

The objects are variable of type class. A class is a collection
of objects of similar type. Classes are user defined data types and
work like the build in type of the programming language. Once the
class has been defined, we can make any number of objects
belonging to that class. Each object is related with the data of type
class with which they are formed.

As we learned that, the classification of objects into various
classes is based on its properties (States) and behaviour (methods).
Classes are used to distinguish are type of object from another. The
important thing about the class is to identify the properties and
procedures and applicability to its instances.

For example: Vehicle
Vehicle

Car

MH-01 1234

COST=
4,00,000

COLOUR=Re
d

Fig.1.3 Representation of class

In above example, we will create an objects MH-01 1234
belonging to the class car. The objects develop their distinctiveness
from the difference in their attribute value and relationships to other
objects.

3. Data Abstraction

Data abstraction refers to the act of representing important
description without including the background details or explanations.

Classes use the concept of abstraction and are defined as a
list of abstract attributes such as size, cost and functions operate on
these attributes. They summarize all the important properties of the
objects that are to be created.

8

Classes use the concepts of data abstraction and it is called as
Abstract Data Type (ADT).

4. Data Encapsulation

Data Encapsulation means wrapping of data and functions
into a single unit (i.e. class). It is most useful feature of class. The
data is not easy to get to the outside world and only those functions
which are enclosed in the class can access it.

These functions provide the boundary between Object’s data
and program. This insulation of data from direct access by the
program is called as Data hiding.

For example:

Information in Data,
process/Functions

Information out

Fig 1.4: Encapsulation

5. Inheritance

Inheritance is the process by which objects of one class can
get the properties of objects of another class. Inheritance means one
class of objects inherits the data and behaviours from another class.
Inheritance maintains the hierarchical classification in which a class
inherits from its parents.

Inheritance provides the important feature of OOP that is
reusability. That means we can include additional characteristics to
an existing class without modification. This is possible deriving a
new class from existing one.

In other words, it is property of object-oriented systems that
allow objects to be built from other objects. Inheritance allows openly
taking help of the commonality of objects when constructing new
classes. Inheritance is a relationship between classes where one
class is the parent class of another (derived) class. The derived
class holds the properties and behaviour of base class in addition to
the properties and behaviour of derived class.

9

For Example:
Vehicle

Car

Hyundai

Santro Accent

Fig.1.5 Inheritance

In Fig.1.5, the Santro is a part of the class Hyundai which is again
part of the class car and car is the part of the class vehicle. That
means vehicle class is the parent class.

6. Polymorphism

(Poly means “many” and morph means “form”).
Polymorphism means the ability to take more than one form.
Polymorphism plays a main role in allocate objects having different
internal structures to share the same external interface. This means
that a general class of operations may be accessed in the same
manner even though specific activities associated with each
operation may differ. Polymorphism is broadly used in implementing
inheritance.

It means objects that can take on or assume many different
forms. Polymorphism means that the same operations may behave
differently on different classes. Booch defines polymorphism as the
relationship of objects many different classes by some common
super class. Polymorphism allows us to write generic, reusable code
more easily, because we can specify general instructions and
delegate the implementation detail to the objects involved.

For Example:
In a pay roll system, manager, office staff and production

worker objects all will respond to the compute payroll message, but
the real operations performed are object particular.

10

Shape
Draw()

Rectangle Object Square Object Circle Object
Draw (Rectangle) Draw (Square) Draw (Circle)

Fig.1.6 Polymorphism

7. Dynamic Binding

Binding refers to the linking of a procedure call to the code to be
executed in response to the call. Dynamic binding means that the
code related with a given procedure call is not known until the time
of the call at run time.
Dynamic binding is associated polymorphism and inheritance.

1.3 JAVA HISTORY :

Java is a general-purpose, object-oriented programming
language developed by Sun Microsystems of USA in 1991.Originally
called Oak by James Gosling (one of the inventor of the language).
Java was invented for the development of software for cunsumer
electronic devices like TVs, tosters, etc. The main aim had to make
java simple, portable and reliable. Java Authors: James , Arthur
Van , and others

Following table shows the year and beginning of Java.

Year Progress

1990 Sun decided to developed software that could be used
for electronic devices. And the project called as Green
Project head by James Gosling.

1991 Announcement of a new language named “Oak”

1992 The team verified the application of their new language

to manage a list of home appliances using a hand held
device.

1993 The World Wide Web appeared on the Internet and

transformed the text-based interface to a graphical rich
environment.

1994 The team developed a new Web browsed called “Hot

11

Java” to locate and run Applets.
1995 Oak was renamed to Java, as it did not survive “legal”

registration. Many companies such as Netscape and
Microsoft announced their support for Java.

1996 Java language is now famous for Internet

programming as well as a general purpose OO
language.

1997 Sun releases Java Development Kit(JDK 1.1)

1998 Sun releases Software Development Kit (SDK 1.2)

1999 Sun releases Java 2 platform Standard Edition (J2SE)
and Enterprise Edition(J2EE).

2000 J2SE with SDK 1.3 was released.

2002 J2SE with SDK 1.4 was released.

2004 J2SE with JDK 5.0 was released.

1.4 JAVA FEATURES:

As we know that the Java is an object oriented programming
language developed by Sun Microsystems of USA in 1991. Java is
first programming language which is not attached with any particular
hardware or operating system. Program developed in Java can be
executed anywhere and on any system.

Features of Java are as follows:

1. Compiled and Interpreted

2. Platform Independent and portable

3. Object- oriented

4. Robust and secure

5. Distributed

6. Familiar, simple and small

7. Multithreaded and Interactive

8. High performance

9. Dynamic and Extensible

1. Compiled and Interpreted
Basically a computer language is either compiled or

interpreted. Java comes together both these approach thus making
Java a two-stage system.

12

Java compiler translates Java code to Bytecode instructions
and Java Interpreter generate machine code that can be directly
executed by machine that is running the Java program.

2. Platform Independent and portable
Java supports the feature portability. Java programs can be

easily moved from one computer system to another and anywhere.
Changes and upgrades in operating systems, processors and
system resources will not force any alteration in Java programs. This
is reason why Java has become a trendy language for programming
on Internet which interconnects different kind of systems worldwide.
Java certifies portability in two ways.
First way is, Java compiler generates the bytecode and that can be
executed on any machine. Second way is, size of primitive data
types are machine independent.

3. Object- oriented
Java is truly object-oriented language. In Java, almost

everything is an Object. All program code and data exist in objects
and classes. Java comes with an extensive set of classes; organize
in packages that can be used in program by Inheritance. The object
model in Java is trouble-free and easy to enlarge.

4. Robust and secure
Java is a most strong language which provides many

securities to make certain reliable code. It is design as garbage –
collected language, which helps the programmers virtually from all
memory management problems. Java also includes the concept of
exception handling, which detain serious errors and reduces all kind
of threat of crashing the system.

Security is an important feature of Java and this is the strong
reason that programmer use this language for programming on
Internet.

The absence of pointers in Java ensures that programs
cannot get right of entry to memory location without proper approval.

5. Distributed
Java is called as Distributed language for construct

applications on networks which can contribute both data and
programs. Java applications can open and access remote objects on
Internet easily. That means multiple programmers at multiple remote
locations to work together on single task.

6. Simple and small
Java is very small and simple language. Java does not use

pointer and header files, goto statements, etc. It eliminates operator
overloading and multiple inheritance.

13

7. Multithreaded and Interactive
Multithreaded means managing multiple tasks

simultaneously. Java maintains multithreaded programs. That means
we need not wait for the application to complete one task before
starting next task. This feature is helpful for graphic applications.

8. High performance
Java performance is very extraordinary for an interpreted

language, majorly due to the use of intermediate bytecode. Java
architecture is also designed to reduce overheads during runtime.
The incorporation of multithreading improves the execution speed of
program.

9. Dynamic and Extensible
Java is also dynamic language. Java is capable of

dynamically linking in new class, libraries, methods and objects.
Java can also establish the type of class through the query building it
possible to either dynamically link or abort the program, depending
on the reply.

Java program is support functions written in other language
such as C and C++, known as native methods.

1.5 COMPARISON IN JAVA AND C++

Java C++

1 Java is true Object- C++ is basically C with

oriented language. Object-oriented extension.
2 Java does not support C++ supports operator

operator overloading. overloading.
3 It supports labels with It supports goto statement.

loops and statement
blocks

4 Java does not have C++ has template classes.
template classes as in
C++.

5 Java compiled into Source code can be written byte
code for the Java to be platform independent
Virtual Machine. The andwrittentotake
source code is advantage of platform.C++
independent on typically compiled into
operating system. machine code.

14

6 Java does not support C++ supports multiple

multiple inheritance of inheritance of classes.
classes but it supports
interface.

7 Runs in a protected Exposes low-level system

virtual machine. facilities.
8 Java does not support C++ support global

global variable. Every variable.
variable should
declare in class.

9 Java does not use C++ uses pointer.

pointer.
10 It Strictly enforces an It Allows both procedural

object oriented programming and object-
programming oriented programming.
paradigm.

11 There are no header We have to use header file

files in Java. in C++.

1.6 JAVA VIRTUAL MACHINE:

As we know that all programming language compilers convert
the source code to machine code.Same job done by Java Compiler
to run a Java program, but the difference is that Java compiler
convert the source code into Intermediate code is called as
bytecode. This machine is called the Java Virtual machine and it
exits only inside the computer memory.

Following figure shows the process of compilation.

Java Java Virtual

Program Compiler Machine

Source Code Byte Code

The Virtual machine code is not machine specific. The machine

specific code is generated. By Java interpreter by acting as an

intermediary between the virtual machine and real machines shown

below

15

Byte Java Machine code

Code Interpreter

Virtual machine Real Machine

Java Object Framework act as the intermediary between the

user programs and the virtual machine which in turn act as the

intermediary between the operating system and the Java Object

Framework.

Operating System

Java Virtual Machine

Java Object Framework

Compiler and Interpreter

User Application Programs

User

Fig: Layers of Interaction for Java programs

1.7 JAVA ENVIRONMENT:

Java environment includes a number of development tools,
classes and methods. The development tools are part of the system
known as Java Development Kit (JDK) and the classes and methods
are part of the Java Standard Library (JSL), also known as the
Application Programming Interface (API).

Java Development kit (JDK) – The JDK comes with a set of
tools that are used for developing and running Java program. It
includes:

1. Appletviewer(It is used for viewing the applet)
2. Javac(It is a Java Compiler)
3. Java(It is a java interpreter)
4. Javap(Java diassembler,which convert byte code into

program description)
5. Javah(It is for java C header files)
6. Javadoc(It is for creating HTML document)
7. Jdb(It is Java debugger)

16

For compiling and running the program we have to use following
commands:

a) javac (Java compiler)
In java, we can use any text editor for writing program and
then save that program with “.java” extension. Java compiler
convert the source code or program in bytecode and
interpreter convert “.java” file in “.class” file. Syntax:

C:\javac filename.java

If my filename is “abc.java” then the syntax will be

C:\javac abc.java

b) java(Java Interpreter)
As we learn that, we can use any text editor for writing
program and then save that program with “.java” extension.
Java compiler convert the source code or program in
bytecode and interpreter convert “.java” file in “.class” file.
Syntax:
C:\java filename

If my filename is abc.java then the syntax will be

C:\java abc

1.8 SIMPLE JAVA PROGRAM:

class FirstProgram
{

public static void main(String args[])
{
System.out.println (“This is my first program”);
}

}

The file must be named “FirstProgram.java” to equivalent the
class name containing the main method.
Java is case sensitive. This program defines a class called
“FirstProgram”.
A class is an object oriented term. It is designed to perform a
specific task. A Java class is defined by its class name, an
open curly brace, a list of methods and fields, and a close
curly brace.
The name of the class is made of alphabetical characters and
digits without spaces, the first character must be alphabetical.

17

The line “public static void main (String [] args)” shows where
the program will start running. The word main means that this
is the main method –
The JVM starts running any program by executing this
method first.
The main method in “FirstProgram.java” consists of a single
statement System.out. println ("This is my first program");
The statement outputs the character between quotes to the
console.

Above explanation is about how to write program and now we
have to learn where to write program and how to compile and
run the program.

For this reason, the next explanation is showing the steps.

1. Edit the program by the use of Notepad.

2. Save the program to the hard disk.

3. Compile the program with the javac command.(Java compiler)

4. If there are syntax errors, go back to Notepad and edit the
program.

5. Run the program with the java command.(Java Interpreter)

6. If it does not run correctly, go back to Notepad and edit the
program.

7. When it shows result then stop.

1.9 SUMMARY :

In this unit, we learn the concept of Object Oriented

Programming, Introduction of Java, History of Java, Features of

Java, Comparison between C++ and Java, Java virtual Machine and

Java Environment.

Questions and Answers:

Q.1) Explain the concept of OOPs.

Ans: refer 1.2

Q.2) Explain JVM?

Ans: refer 1.6

Q.3)Explain the features of JAVA?

Ans: refer 1.4

Q.4) Explain Difference between C++ and JAVA?

Ans: refer 1.5









18

2
DATA TYPES, VARIABLES AND

CONSTANTS

Unit Structure
2.1 Datatypes

2.1.1 Integer data type

2.1.2 Floating point data type

2.1.3 Character data type

2.1.4 Boolean data type

2.2 Mixing Data types

2.3 Variables

2.3.1 Variable name

2.4 Constants

2.4.1 Integer Constant

2.4.2 Real Constant

2.4.3 Character Constant

2.4.4 String Constant

2.4.5 Symbolic constant

2.4.6 Backslash character constant

2.5 Comments

2.6 Command line arguments

2.7 Summary

2.8 Questions

2.1 DATA TYPES:

A data type is a scheme for representing values. An example
is int which is the Integer, a data type.
Values are not just numbers, but any manner of data that a
computer can process.
The data type defines the kind of data that is represented by
a variable.
As with the keyword class, Java data types are case
sensitive.

19

There are two types of data types
primitive data type
non-pimitive data type

In primitive data types, there are two categories
numeric means Integer, Floating points
Non-numeric means Character and Boolean

In non-pimitive types, there are three categories
classes
arrays
interface

Following table shows the datatypes with their size and ranges.

Data type Size (byte) Range
byte 1 -128 to 127
boolean 1 True or false
char 2 A-Z,a-z,0-9,etc.
short 2 -32768 to 32767
Int 4 (about) -2 million to 2 million
long 8 (about) -10E18 to 10E18
float 4 -3.4E38 to 3.4E18
double 8 -1.7E308 to 1.7E308

Fig: Datatypes with size and range

2.1.1 Integer data type:
Integer datatype can hold the numbers (the number can be
positive number or negative number). In Java, there are four
types of integer as follows:

byte
short
int

long
We can make ineger long by adding ‘l’ or ‘L’ at the end of the
number.

2.1.2 Floating point data type:
It is also called as Real number and when we require

accuracy then we can use it.
There are two types of floating point data type.

float
double

It is represent single and double precision numbers. The float
type is used for single precision and it uses 4 bytes for storage

20

space. It is very useful when we require accuracy with small degree
of precision. But in double type, it is used for double precision and
uses 8 bytes of starage space. It is useful for large degree of
precision.

2.1.3 Character data type:
It is used to store single character in memory. It uses 2 bytes

storage space.

2.1.4 Boolean data type:
It is used when we want to test a particular condition during

the excution of the program. There are only two values that a
boolean type can hold: true and false.
Boolean type is denoted by the keyword boolean and uses only one
bit of storage.

Following program shows the use of datatypes.
Program:

import java.io.DataInputStream;
class cc2
{
public static void main(String args[]) throws Exception
{
DataInputStream s1=new DataInputStream(System.in);
byte rollno;
int marks1,marks2,marks3;
float avg;

System.out.println("Enter roll number:");
rollno=Byte.parseByte(s1.readLine());

System.out.println("Enter marks m1, m2,m3:");
marks1=Integer.parseInt(s1.readLine());
marks2=Integer.parseInt(s1.readLine());
marks3=Integer.parseInt(s1.readLine());

avg = (marks1+marks2+marks3)/3;

System.out.println("Roll number is="+rollno);
System.out.println("Average is="+avg); }

}
Output:

C:\cc>java cc2
Enter roll number:
07
Enter marks m1, m2,m3:
66

21

77
88
Roll number is=7
Average is=77.0

2. 2 MIXING DATA TYPES:

Java allows mixing of constants and variables of different
types in an expression, but during assessment it hold to very strict
rules of type conversion.

When computer consider operand and operator and if
operands are different types then type is automatically convert in
higher type.

Following table shows the automatic type conversion.

char byte short int long float doubl
e

Char int int int int long float double
Byte int int int int long float double
Short int int int int long float double
Int int int int int long float double
Long long long long long long float double
Float float float float float float float double
doubl doubl doubl doubl doubl doubl doubl double
e e e e e e e

2.3 VARIABLES:

Variables are labels that express a particular position in
memory and connect it with a data type.

The first way to declare a variable: This specifies its data
type, and reserves memory for it. It assigns zero to primitive types
and null to objects.

dataType variableName;

The second way to declare a variable: This specifies its data
type, reserves memory for it, and puts an initial value into that
memory. The initial
value must be of the correct data type.

dataType variableName = initialValue;

The first way to declare two variables: all of the same data
type, reserves memory for each.

22

dataType variableNameOne, variableNameTwo;

The second way to declare two variables: both of the same
data type, reserves memory, and puts an initial value in each
variable.

dataType variableNameI = initialValueI,
variableNameII=initialValueII;

2.3.1 Variable name:
Use only the characters ‘a’ through ‘z’, ‘A’ through ‘Z’, ‘0’
through ‘9’, character ‘_’, and character ‘$’.
A name cannot include the space character.
Do not begin with a digit.

A name can be of any realistic length.
Upper and lower case count as different characters.
A name cannot be a reserved word (keyword).
A name must not previously be in utilized in this block of the
program.

2.4 CONSTANT :

Constant means fixed value which is not change at the time
of execution of program. In Java, there are two types of constant as
follows:

Numeric Constants
 Integer constant
 Real constant

Character Constants
 Character constant
 String constant

2.4.1 Integer Constant:
An Integer constant refers to a series of digits. There are

three types of integer as follows:
a) Decimal integer

Embedded spaces, commas and characters are not alloed in
between digits.
For example:
23 411
7,00,000
17.33

b) Octal integer
It allows us any sequence of numbers or digits from 0 to 7
with leading 0 and it is called as Octal integer.

23

For example:

011

00

0425

c) Hexadecimal integer
It allows the sequence which is preceded by 0X or 0x and it also
allows alphabets from ‘A’ to ‘F’ or ‘a’ to ‘f’ (‘A’ to ‘F’ stands for the
numbers ‘10’ to ‘15’) it is called as Hexadecimal integer. For
example:
0x7
00X
0A2B

2.4.2 Real Constant
It allows us fractional data and it is also called as folating point
constant.
It is used for percentage, height and so on.
For example:
0.0234
0.777
-1.23

2.4.3 Character Constant
It allows us single character within pair of single coute.
For example:
‘A’
‘7’
‘\’

2.4.4 String Constant
It allows us the series of characters within pair of double coute.
For example:
“WELCOME”
“END OF PROGRAM”
“BYE …BYE”
“A”

2.4.5 Symbolic constant:
In Java program, there are many things which is requires
repeatedly and if we want to make changes then we have to make
these changes in whole program where this variable is used. For
this purpose, Java provides ‘final’ keyword to declare the value of
variable as follows:
Syntax:
final type Symbolic_name=value;

24

For example:
If I want to declare the value of ‘PI’ then:

final float PI=3.1459

the condition is, Symbolic_name will be in capital letter(it shows the
difference between normal variable and symblic name) and do not
declare in method.

2.4.6 Backslash character constant:
Java support some special character constant which are given in
following table.

Constant Importance
‘\b’ Back space
‘\t’ Tab
‘\n’ New line
‘\\’ Backslash
‘\” Single coute
‘\”’ Double coute

2.5 Comments:

A comment is a note written to a human reader of a program.
The program compiles and runs exactly the same with or without
comments. Comments start with the two characters “//” (slash slash).
Those characters and everything that follows them on the same line
are ignored by the java compiler. everything between the two
characters “/*”and the two characters “*/” are unobserved by the
compiler. There can be many lines of comments between the “/*”
and the “*/”.

2.6 COMMAND LINE ARGUMENTS:

Command line arguments are parameters that are supplied to
the application program at the time of invoking its execution. They
must be supplied at the time of its execution following the file name.

In the main () method, the args is confirmed as an array of
string known as string objects. Any argument provided in the
command line at the time of program execution, are accepted to the
array args as its elements. Using index or subscripted entry can
access the individual elements of an array. The number of element
in the array args can be getting with the length parameter.

25

For example:
class Add
{
public static void main(String args[])

{
int a=Integer.parseInt(args[0]);
int b=Integer.parseInt(args[1]);

int c=a+b;
System.out.println(“Addition is=”+c);

}
}
output:
c:\javac Add.java
c:\java Add 5 2
7

2.7 SUMMARY:

In this unit, we learn the concept of dtata types, variable and
constants with example. In constants, we gain knowledge of back
slash character constant. Additionaly we study the concept of
command line argument and comments which is also essential for
us.

2.8 QUESTION:

1. Explain types of Datatypes with example?

Ans: refer 2.1

2. Explain Constants with example?

Ans: refer 2.4



26

3
TOKENS IN JAVA

Unit Structure
3.1 Introduction

3.2 Tokens in Java

3.2.1 Identifiers

3.2.2 Litrals

3.2.3 Keywords

3.2.4 Operator

3.2.4.1 Arithmetic operators

3.2.4.2 Logical operators

3.2.4.3 Relational operators

3.2.4.4 Assignment operators

3.2.4.5 Conditional operators

3.2.4.6 Increment and decrement operators

3.2.4.7 Bit-wise operator

3.2.5 Separators

3.3 Operator Precedence in Java

3.4 Summary

3.1 INTRODUCTION:

A Java program is basically a set of classes. A class is
defined by a set of declaration statements and methods or functions.
Most statements contain expressions, which express the actions
carried out on information or data. Smallest indivisual thing in a
program are known as tokens. The compiler recognizes them for
building up expression and statements.

3.2 TOKENS IN JAVA:

There are five types of token as follows:
1. Literals
2. Identifiers
3. Operators
4. Separators

27

3.2.1 Literals:
Literals in Java are a sequence of characters (digits, letters

and other characters) that characterize constant values to be stored
in variables. Java language specifies five major types of literals are
as follows:

1. Integer literals
2. Floating point literals
3. Character literals
4. String literals
5. Boolean literals

3.2.2 Identifiers:
Identifiers are programmer-created tokens. They are used for

naming classes, methods, variables, objects, labels, packages and
interfaces in a program. Java identifiers follow the following rules:

1. They can have alphabets, digits, and the underscore and
dollar sign characters.

2. They must not start with a digit.
3. Uppercase and lowercase letters are individual.
4. They can be of any length.

Identifier must be meaningful, easily understandable and descriptive.

For example:
Private and local variables like “length”.
Name of public methods and instance variables begin with
lowercase letter like “addition”

3.2.3 Keywords:
Keywords are important part of Java. Java language has

reserved 50 words as keywords. Keywords have specific meaning in
Java. We cannot use them as variable, classes and method.
Following table shows keywords.

abstract char catch boolean
default finally do implements
if long throw private
package static break double
this volatile import protected
class throws byte else
float final public transient
native instanceof case extends
int null const new
return try for switch

28

interface void while synchronized
short continue goto super
assert const

3.2.4 Operator:
Java carries a broad range of operators. An operator is

symbols that specify operation to be performed may be certain
mathematical and logical operation. Operators are used in programs
to operate data and variables. They frequently form a part of
mathematical or logical expressions.

Categories of operators are as follows:

1. Arithmetic operators
2. Logical operators
3. Relational operators
4. Assignment operators
5. Conditional operators
6. Increment and decrement operators
7. Bit wise operators

3.2.4.1 Arithmetic operators:
Arithmetic operators are used to make mathematical

expressions and the working out as same in algebra. Java provides
the fundamental arithmetic operators. These can operate on built in
data type of Java.

Following table shows the details of operators.

Operator Importance/ significance
+ Addition
- Subtraction
/ Division
* Multiplication
% Modulo division or remainder

Now the following programs show the use of arithmetic operators.

“+” operator in Java:

In this program, we have to add two integer numbers and display the
result.

class AdditionInt
{
public static void main (String args[])
{

int a = 6;

29

int b = 3;

System.out.println("a = " + a);
System.out.println("b =" + b);

int c = a + b;
System.out.println("Addition = " + c);

}
}

Output:
a= 6
b= 3
Addition=9

“-” operator in Java:

class SubstractionInt
{
public static void main (String args[])
{

int a = 6;
int b = 3;

System.out.println("a = " + a);
System.out.println("b =" + b);

int c = a - b;

System.out.println("Subtraction= " + c);
}
}
Output:
a=6
b=3
Subtraction=3

“*” operator in Java:

Class MultiplicationInt
{
public static void main (String args[])
{

int a = 6;
int b = 3;

System.out.println("a = " + a);

30

System.out.println("b =" + b);

int c = a * b;
System.out.println("Multiplication= " + c);

}
}
Output:
a=6
b=3
Multiplication=18

“/” operator in Java:

Class DivisionInt
{
public static void main (String args[])
{

int a = 6;
int b = 3;

System.out.println("a = " + a);
System.out.println("b =" + b);

c = a / b;
System.out.println("division=" + c);

}
}
Output:
a=6
b=3
Division=3

Remainder or modulus operator (%) in Java:

Class Remainderoptr
{
public static void main (String args[])
{

int a = 6;
int b = 3;

System.out.println("a = " + a);
System.out.println("b =" + b);

c = a % b;
System.out.println("remainder=" + c);

}
}

31

Output:
a=6
b=3
Remainder= 0

When both operands in the expression are integers then the
expression is called Integer expression and the opration is
called Integer arithmetic.
When both operands in the expression are real then the
expression is called Real expression and the opration is
called Real arithmetic.

When one operand in the expression is integer and other is
float then the expression is called Mixed Mode Arithmetic
expression and the opration is called Mixed Mode Arithmetic
operation.

As we learn the Arithmetic operation on integer data and store
data in integer variable. But the following program shows the use of
operators with integer data and store data in float variable.

Program: write a program to calculate average of three numbers.

class Avg1
{
public static void main(String args[])
{

int a=3;
int b=3;
int c=4;
int avg;

avg=a+b+c;
avg=avg/3;
System.out.println(“Avg of three numbers=”+avg);
}
}

Output:
Avg of three numbers=3

3.2.4.2 Logical operators:

When we want to form compound conditions by combining
two or more relations, then we can use logical operators. Following
table shows the details of operators.

Operators Importance/ significance
|| Logical – OR
& Logical –AND
!Logical –NOT

32

The logical expression defer a value of true or false.
Following table shows the truth table of Logical – OR and Logical –
AND.

Truth table for Logical – OR operator:

Operand1 Operand3 Operand1 || Operand3
T T T
T F T
F T T
F F F

T - True
F - False

Truth table for Logical – AND operator:

Operand1 Operand3 Operand1 && Operand3
T T T
T F F
F T F
F F F

T – True
F – False
Now the following program shows the use of Logical operators.
class LogicalOptr
{

public static void main (String args[])
{

boolean a = true;
boolean b = false;

System.out.println("a||b = " +(a||b));
System.out.println("a&&b = "+(a&&b));
System.out.println("a! = "+(!a));

}
}

Output:
a||b = true
a&&b = false
a! = false

33

3.2.4.3 Relational Operators:
When evaluation of two numbers is performed depending

upon their relation, assured decisions are made.
The value of relational expression is either true or false.

If A=7 and A < 10 is true while 10 < A is false.

Following table shows the details of operators.

Operator Importance/ significance
> Greater than
< Less than
!= Not equal to
>= Greater than or equal to
<= Less than or equal to

Now, following examples show the actual use of operators.
1) If 10 > 30 then result is false
2) If 40 > 17 then result is true
3) If 10 >= 300 then result is false
4) If 10 <= 10 then result is true

Now the following program shows the use of operators.
(1) Program 1:

class Reloptr1
{

public static void main (String args[])
{

int a = 10;
int b = 30;

System.out.println("a>b = " +(a>b));
System.out.println("a<b = "+(a<b));
System.out.println("a<=b = "+(a<=b));

}
}

Output:
a>b = false
a<b = true
a<=b = true

(2) Program 3
class Reloptr3
{

public static void main (String args[])
{

34

int a = 10;
int b = 30;
int c = 30;

System.out.println("a>b = " +(a>b));
System.out.println("a<b = "+(a<b));
System.out.println("a<=c = "+(a<=c));
System.out.println("c>b = " +(c>b));
System.out.println("a<c = "+(a<c));
System.out.println("b<=c = "+(b<=c));

}
}

Output:
a>b = false
a<b = true
a<=c = true
c>b = true
a<c = true
b<=c = true

3.2.4.4 Assignment Operators:
Assignment Operators is used to assign the value of an

expression to a variable and is also called as Shorthand operators.

Variable_name binary_operator = expression

Following table show the use of assignment operators.

Simple Assignment Statement with shorthand
Operator Operators
A=A+1 A+=1
A=A-1 A-=1
A=A/(B+1) A/=(B+1)
A=A*(B+1) A*=(B+1)
A=A/C A/=C
A=A%C A%=C

These operators avoid repetition, easier to read and write.

Now the following program shows the use of operators.

class Assoptr
{

public static void main (String args[])
{

35

int a = 10;
int b = 30;
int c = 30;

a+=1;
b-=3;
c*=7;

System.out.println("a = " +a);
System.out.println("b = "+b);
System.out.println("c = "+c);

}
}

Output:
a = 11
b = 18
c = 310

3.2.4.5 Conditional Operators:
The character pair ?: is a ternary operator of Java, which is

used to construct conditional expressions of the following form:

Expression1 ? Expression3 : Expression3

The operator ? : works as follows:
Expression1 is evaluated if it is true then Expression3 is
evaluated and becomes the value of the conditional
expression. If Expression1 is false then Expression3 is
evaluated and its value becomes the conditional expression.

For example:
A=3;
B=4;
C=(A<B)?A:B;
C=(3<4)?3:4;
C=4

Now the following program shows the use of operators.

class Coptr
{

public static void main (String args[])
{

int a = 10;
int b = 30;
int c;

c=(a>b)?a:b;
System.out.println("c = " +c);

36

c=(a<b)?a:b;
System.out.println("c = " +c);

}
}

Output:
c = 30
c = 10

program3: Write a program to check whether number is positive or
negative.

class PosNeg
{

public static void main(String args[])
{
int a=10;
int flag=(a<0)?0:1;
if(flag==1)

System.out.println(“Number is positive”);
else

System.out.println(“Number is negative”);
}

}

Output:
Number is positive

3.2.4.6 Increment and Decrement Operators:

The increment operator ++ adds 1 to a variable. Usually the
variable is an integer type, but it can be a floating point type. The two
plus signs must not be split by any character. Usually they are
written immediately next to the variable.

Following table shows the use of operators.

Expression Process Example end result
A++ Add 1 to a variable int A=10,B; A=11

after use. B=A++; B=10
++A Add 1 to a variable int A=10,B; A=11

before use. B=++A; B=11
A-- Subtract 1 from a int A=10,B; A=9

variable after use. B=A--; B=10
--A Subtract 1 from a int A=10,B; A=9

variable before use. B=--A; B=9

37

Now the following program shows the use of operators.

class IncDecOp
{
public static void main(String args[])
{
int x=1;
int y=3;
int u;
int z;
u=++y;
z=x++;
System.out.println(x);
System.out.println(y);
System.out.println(u);
System.out.println(z);
}
}

Output:
3
4
4
1

3.2.4.7 Bit Wise Operators:

Bit wise operator execute single bit of their operands.
Following table shows bit wise operator:

Operator Importance/ significance
| Bitwise OR
& Bitwise AND
&= Bitwise AND assignment
|= Bitwise OR assignment
^ Bitwise Exclusive OR
<< Left shift
>> Right shift
~ One’s complement

Now the following program shows the use of operators.
(1) Program 1

class Boptr1
{

public static void main (String args[])
{

int a = 4;
int b = a<<3;

38

System.out.println("a = " +a);

System.out.println("b = " +b);

}
}

Output:
a =4
b =16

(2) Program 3

Class Boptr3
{
public static void main (String args[])
{

int a = 16;
int b = a>>3;

System.out.println("a = " +a);
System.out.println("b = " +b);

}
}

Output:
a = 16
b = 3

(Please refer following table)

356 138 64 33 16 8 4 3 1
38 37 36 35 34 33 33 31 30

3.2.5 Separator:
Separators are symbols. It shows the separated code.they

describe function of our code.

Name use
() Parameter in method definition, containing statements

for conditions,etc.
{} It is used for define a code for method and classes
[] It is used for declaration of array
; It is used to show the separate statement
, It is used to show the separation in identifier in variable

declarartion
. It is used to show the separate package name from sub-

packages and classes, separate variable and method
from reference variable.

39

3.3 OPERATOR PRECEDENCE IN JAVA:

An arithmetic expression without any parentheses will be
calculated from left to right using the rules of precedence of
operators.

There are two priority levels of arithmetic operators are as follows:
(a) High priority (* / %)
(b) Low priority (+ -)

The evaluation process includes two left to right passes
through the expression. During the first pass, the high priority
operators are applied as they are encountered.
During the second pass, the low priority operators are applied as
they are encountered.

For example:
Z=A-B/3+C*3-1
When A=10, B=13, C=3
First pass:
Z=10-(13/3) + (3*3)-1
Z=10-4+3-1

Second pass:
Z=6+3-1
Z=7
Answer is=7
Following table shows associativity of operators.

Operator Associativity Rank
[] Left to right 1
() Left to right
. Left to right
- Right to left
++ Right to left 3
-- Right to left
! Right to left
~ Right to left
(type) Right to left
* Left to right 3
/ Left to right
% Left to right
+ Left to right 4
- Left to right
<< Left to right 5
>> Left to right
>>> Left to right

40

< Left to right
<= Left to right 6
> Left to right
>= Left to right
Instanceof Left to right
== Left to right 7
!= Left to right
& Left to right 8
^ Left to right 9
| Left to right 10
&& Left to right 11
|| Left to right 13
?: Right to left 13
= Right to left 14

3.4 SUMMARY:

In this unit, we learn the cocept of tokens in java.There are
4 types of tokens as we learn:

1. Literals

2. Identifiers

3. Operators

Types of operators are:

1. Arithmetic operators
2. Logical operators
3. Relational operators
4. Assignment operators
5. Conditional operators
6. Increment and decrement operators

7. Bit wise operator

We learn these operators with example.

4. separator



41

4
CONTROL STRUCTURE

Unit Structure

4.1 Introduction
4.2 Control structure

4.2.1 Selection Statement
4.2.1.1 if statement
4.2.1.1.1 Simple if statement
4.2.1.1.2 The if…else statement
4.2.1.1.3 Nesting of if-else statement
4.2.1.2 switch statement

4.2.2 Iteration Statement
4.2.2.1 for loop
4.2.2.2 while loop
4.2.2.3 do-while loop

4.2.3 Jump in Statement
4.3 Summary

4.1 INTRODUCTION:

In Java, program is a set of statements and which are
executed sequentially in order in which they appear. In that
statements, some calculation have need of executing with some
conditions and for that we have to provide control to that statements.
In other words, Control statements are used to provide the flow of
execution with condition.

In this unit, we will learn the control structure in detail.

4.2 CONTROL STRUCTURE:

In java program, control structure is can divide in three parts:

Selection statement
Iteration statement
Jumps in statement

4.2.1 Selection Statement:

Selection statement is also called as Decision making

statements because it provides the decision making capabilities to

the statements.

42

In selection statement, there are two types:

if statement

switch statement

These two statements are allows you to control the flow of a

program with their conditions.

4.2.1.1 if Statement:

The “if statement” is also called as conditional branch

statement. It is used to program execution through two paths. The

syntax of “if statement” is as follows:

Syntax:

if (condition)

{

Statement 1;
Statement 2;

...

}

else

{

Statement 3;

Statement 4;

...
}

The “if statement” is a commanding decision making statement and
is used to manage the flow of execution of statements. The “if
statement” is the simplest one in decision statements. Above syntax
is shows two ways decision statement and is used in combination
with statements.

43

Following figure shows the “if statement”

Condition
? true

False

4.2.1.1.1 Simple if statement:

Syntax:

If (condition)

{

Statement block;

}

Statement-a;

In statement block, there may be single statement or multiple

statements. If the condition is true then statement block will be

executed. If the condition is false then statement block will omit and

statement-a will be executed.

44

Following figure shows the flow of statement.

false

Condition?

True

Statement Block

Statement ‘a’

4.2.1.1.2 The if…else statement:

Syntax:

If (condition)

{

True - Statement block;

}

else

{

False - Statement block;

}

45

Statement-a;

If the condition is true then True - statement block will be executed. If

the condition is false then False - statement block will be executed.

In both cases the statement-a will always executed.

Following figure shows the flow of statement.

Condition?

True – False –
Statement Statement

Block Block

Statement ‘a’

Following program shows the use of if statement.

Program: write a program to check whether the number is positive or

negative.

import java.io.*;

class NumTest

{

public static void main (String[] args) throws IOException

{

int Result=11;

System.out.println("Number is"+Result);

if (Result < 0)

{

46

System.out.println("The number "+ Result +" is negative");

}

else

{

System.out.println("The number "+ Result +" is positive");

}

System.out.println("------- * ---------");

}

}

Output:

C:\MCA>java NumTest

Number is 11

The number 11 is positive

------- * ---------

(All conditional statements in Java require boolean values, and that's
what the ==, <, >, <=, and >= operators all return. A boolean is a
value that is either true or false. If you need to set a boolean variable
in a Java program, you have to use the constants true and false.
Boolean values are no more integers than are strings).

For example: write a program to check whether the number is

divisible by 2 or not.

import java.io.*;

class divisorDemo

{

public static void main(String[] args)

{

int a =11;

if(a%2==0)

47

{

System.out.println(a +" is divisible by 2");

}

else

{

System.out.println(a+" is not divisible by 2");

}

}

}

Output:

C:\MCA>java divisorDemo

11 is not divisible by 2

4.2.1.1.3 Nesting of if-else statement:

Syntax:

if (condition1)

{

If(condition2)

{

Statement block1;

}

else

{

Statement block2;

}

}

else

48

{

Statement block3;

}

Statement 4:

If the condition1 is true then it will be goes for condition2. If
the condition2 is true then statement block1 will be executed
otherwise statement2 will be executed. If the condition1 is false then
statement block3 will be executed. In both cases the statement4 will
always executed.

false
true

Condition1

false true

Condition2

Statement3 Statement2 Statement1

Statement4

For example: Write a program to find out greatest number from three

numbers.

class greatest

{

public static void main (String args[])

{

int a=10;

int b=20;

49

int c=3;

if(a>b)

{

if(a>c)

{

System.out.println("a is greater number");

}

else

{

System.out.println("c is greater number");

}

}

else

{

if(c>b)

{

System.out.println("c is greater number");

}

else

{

System.out.println("b is greater number");

}

}

}

}

Output:

C:\MCA>java greatest

b is greater number

50

4.2.1.2 switch statement:

In Java, switch statement check the value of given variable or

statement against a list of case values and when the match is found

a statement-block of that case is executed. Switch statement is also

called as multiway decision statement.

Syntax:

switch(condition)// condition means case value

{

case value-1:statement block1;break;

case value-2:statement block2;break;

case value-3:statement block3;break;

…

default:statement block-default;break;

}

statement a;

The condition is byte, short, character or an integer. value-
1,value-2,value-3,…are constant and is called as labels. Each of
these values be matchless or unique with the statement. Statement
block1, Statement block2, Statement block3,..are list of statements
which contain one statement or more than one statements. Case
label is always end with “:” (colon).

Program: write a program for bank account to perform following

operations.

-Check balance
-withdraw amount

-deposit amount

For example:

import java.io.*;

class bankac

{
public static void main(String args[]) throws Exception

51

{

int bal=20000;

int ch=Integer.parseInt(args[0]);

System.out.println("Menu");

System.out.println("1:check balance");

System.out.println("2:withdraw amount... plz enter choice

and amount");

System.out.println("3:deposit amount... plz enter choice and

amount");

System.out.println("4:exit");

switch(ch)

{

case 1:System.out.println("Balance is:"+bal);

break;

case 2:int w=Integer.parseInt(args[1]);

if(w>bal)

{

System.out.println("Not sufficient balance");

}

bal=bal-w;

System.out.println("Balance is"+bal);

break;

case 3:int d=Integer.parseInt(args[1]);

bal=bal+d;

System.out.println("Balance is"+bal);

break;

52

default:break;

}

}

}

Output:

C:\MCA>javac bankac.java

C:\MCA>java bankac 1

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

Balance is:20000

C:\MCA>java bankac 2 2000

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

Balance is18000

C:\MCA>java bankac 3 2000

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

53

3:deposit amount... plz enter choice and amount

4:exit

Balance is22000

C:\MCA>java bankac 4

Menu

1:check balance

2:withdraw amount... plz enter choice and amount

3:deposit amount... plz enter choice and amount

4:exit

C:\MCA>java bankac

4.2.2 Iteration Statement:

The process of repeatedly executing a statements and is

called as looping. The statements may be executed multiple times

(from zero to infinite number). If a loop executing continuous then it

is called as Infinite loop. Looping is also called as iterations.

In Iteration statement, there are three types of operation:

for loop
while loop
do-while loop

4.2.2.1 for loop:

The for loop is entry controlled loop. It means that it provide a

more concious loop control structure.

Syntax:

for(initialization;condition;iteration)//iteration means increment/

decrement

{

Statement block;

}

54

When the loop is starts, first part(i.e. initialization) is execute.
It is just like a counter and provides the initial value of loop. But the
thing is, I nitialization is executed only once. The next part(i.e.
condition) is executed after the initialization. The important thing is,
this part provide the condition for looping. If the condition will
satisfying then loop will execute otherwise it will terminate.

Third part(i.e. iteration) is executed after the condition. The

statements that incremented or decremented the loop control

variables.

For example:

import java.io.*;

class number

{

public static void main(String args[]) throws Exception

{

int i;

System.out.println("list of 1 to 10 numbers");

for(i=1;i<=10;i++)

{

System.out.println(i);

}

}

}

Output:

C:\MCA>javac number.java

C:\MCA>java number

list of 1 to 10 numbers

1

2

55

3

4

5

6

7

8

9

10

Here we declare i=1 and then it check the condition that if
i<10 then only loop will be executed. After first iteration the value of
i will print and it will incremented by 1. Now the value of i=2 and

again we have to check the condition and value of i will print and

then increment I by 1 and so on.

4.2.2.2 while loop:

The while loop is entry controlled loop statement. The

condition is evaluated, if the condition is true then the block of

statements or statement block is executed otherwise the block of

statement is not executed.

Syntax:

While(condition)

{

Statement block;

}

For example: Write a program to display 1 to 10 numbers using

while loop.

import java.io.*;

class number

{

public static void main(String args[]) throws Exception

{

56

int i=1;

System.out.println("list of 1 to 10 numbers");

while(i<=10)

{

System.out.println(i);

i++;

}

}

}

Output:

C:\MCA>javac number.java

C:\MCA>java number

list of 1 to 10 numbers

1

2

3

4

5

6

7

8

9

10

4.2.2.3 do-while loop:

In do-while loop, first attempt of loop should be execute then

it check the condition.

57

The benefit of do-while loop/statement is that we get entry in

loop and then condition will check for very first time. In while loop,

condition will check first and if condition will not satisfied then the

loop will not execute.

Syntax:

do

{

Statement block;

}

While(condition);

In program,when we use the do-while loop, then in very first

attempt, it allows us to get enter in loop and execute that loop and

then check the condition.

Following program show the use of do-while loop.

For example: Write a program to display 1 to 10 numbers using do-

while loop.

import java.io.*;

class number

{

public static void main(String args[]) throws Exception

{

int i=1;

System.out.println("list of 1 to 10 numbers");

do

{

System.out.println(i);

i++;

}while(i<=10);

}

58

}

Output:

list of 1 to 10 numbers

1

2

3

4

5

6

7

8

9

10

4.2.3 Jumps in statement:

Statements or loops perform a set of operartions continually
until the control variable will not satisfy the condition. but if we want
to break the loop when condition will satisy then Java give a
permission to jump from one statement to end of loop or beginning
of loop as well as jump out of a loop.

“break” keyword use for exiting from loop and “continue”

keyword use for continuing the loop.

Following statements shows the exiting from loop by using “break”

statement.

do-while loop:

do

{

………………

………………

if(condition)

59

{

break;//exit from if loop and do-while loop

}

……………..

……………..

}

While(condition);

………..

………..

For loop:

for(…………)

{

……………

…………..

if(…………..)

break; ;//exit from if loop and for loop

……………

……………

}

……………

…………..

While loop:

while(…………)

{

60

……………

…………..

if(…………..)

break; ;//exit from if loop and while loop

……………

……………

}

Following statements shows the continuing the loop by using

“continue” statement.

do-while loop:

do

{

………………

………………

if(condition)

{

continue;//continue the do-while loop

}

……………..

……………..

}

While(condition);

………..

………..

For loop:

for(…………)

61

{

……………

…………..

if(…………..)

continue ;// continue the for loop

……………

……………

}

……………

…………..

While loop:

while(…………)

{

……………

…………..

if(…………..)

continue ;// continue the while loop

……………

……………

}

…………….

…………….

Labelled loop:

We can give label to a block of statements with any valid

name.following example shows the use of label, break and continue.

62

For example:

Import java.io.*;

class Demo

{

public static void main(String args[]) throws Exception

{

int j,i;

LOOP1: for(i=1;i<100;i++)

{

System.out.println(““);

if(i>=10)

{

break;

}

for(j=1;j<100;j++)

{

System.out.println(“$ ”);

if(i==j)

{

continue LOOP1;

}

}

}

System.out.println(“ End of program “);

}

}

63

Output:

$

$ $

$ $ $

$ $ $ $

$ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $ $

$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $

End of program

4.3 SUMMARY:

In this unit, we covered Selection Statement, Iteration

Statement and Jump in Statement.

In Selection statement, we covered if statement and switch
statement with example.

In Iteration Statement, we covered for loop, while loop and
do-while loop with example.

In Jump in Statement, we covered break, continue and label
with example.



64

5
CLASSES

Unit Structure

5.1 Objective
5.2 class

5.2.1 Creating “main” in a separate class
5.2.2 Methods with parameters
5.2.3 Methods with a Return Type
5.2.4 Method Overloading
5.2.5 Passing Objects as Parameters
5.2.6 Passing Values to methods and Constructor:
5.2.7 Abstract Classes
5.2.8 Extending the class:

5.3 Summary:
5.4 List of references
5.5 Bibliography
5.6 Model answers

5.1 OBJECTIVE :

In this lesson of Java Tutorial, you will learn...

How to create class
How to create method

How to create constructor

5.2 CLASS

Definition: A class is a collection of objects of similar type. Once a
class is defined, any number of objects can be produced which
belong to that class.

Class Declaration
class classname
{
…
ClassBody
…
}

65

Objects are instances of the Class. Classes and Objects are very
much related to each other. Without objects you can't use a class.

A general class declaration:

class name1

{

//public variable declaration

void methodname()

{

//body of method…

//Anything

}

}

Now following example shows the use of method.

class Demo

{

private int x,y,z;

public void input()

{

x=10;

y=15;

}

public void sum()

{

z=x+y;

}

public void print_data()

{

System.out.println(“Answer is =” +z);

}

public static void main(String args[])

{

Demo object=new Demo();

object.input();

object.sum();

object.print_data();

}

}

66

In program,

Demo object=new Demo();

object.input();

object.sum();

object.print_data();

In the first line we created an object.

The three methods are called by using the dot operator. When we
call a method the code inside its block is executed.
The dot operator is used to call methods or access them.

5.2.1 Creating “main” in a separate class
We can create the main method in a separate class, but

during compilation you need to make sure that you compile the class
with the “main” method.

class Demo

{

private int x,y,z;

public void input() {

x=10;

y=15;

}

public void sum()

{

z=x+y;

}

public void print_data()

{

System.out.println(“Answer is =” +z);

}

}

class SumDemo

{

public static void main(String args[])

{

Demo object=new Demo();

object.input();

object.sum();

object.print_data();

}

}

67

Use of dot operator
We can access the variables by using dot operator.

Following program shows the use of dot operator.

class DotDemo

{

int x,y,z;

public void sum(){

z=x+y;

}

public void show(){

System.out.println("The Answer is "+z);

}

}

class Demo1

{

public static void main(String args[]){

DotDemo object=new DotDemo();

DotDemo object2=new DotDemo();

object.x=10;

object.y=15;

object2.x=5;

object2.y=10;

object.sum();

object.show();

object2.sum();

object2.show();

}}

output :

C:\cc>javac Demo1.java
C:\cc>java Demo1
The Answer is 25
The Answer is 15

Instance Variable
All variables are also known as instance variable. This is because of
the fact that each instance or object has its own copy of values for
the variables. Hence other use of the “dot” operator is to initialize the
value of variable for that instance.

