Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat No.

[5152]-563

S.E. (Comp.) (First Semester) EXAMINATION, 2017 DATA STRUCTURES AND ALGORITHNS (2015 PATTERN)

(2015 PATTERN)				
Fime	: T	wo Hours Maximum Marks : 50		
1.	(<i>a</i>)	Show that $f(x) = 0$ (x^3) if function $f(x)$ is defined as		
		$f(x) = 5x^3 + 6x^2 + 1 ag{3}$		
	(<i>b</i>)	Differentiate between linear and non-linear data structure with		
		example. [3]		
	(c)	Explain divide and conquer strategy with example. Also com-		
		ment on the time analysis. [6]		
		Or		
2.	(<i>a</i>)	Explain fast Transpose of sparse matrix with suitable example.		
		Discuss time complexity of fast transpose. [6]		
	<i>(b)</i>	Explain polynomial representation using arrays with suitable		
		example. [3]		
	(c)	Derive recurrence relation to represent set of natural numbers		
		giving remainder one when digvided by three. [3]		
3.	(<i>a</i>)	Represent the following polynomial by using-generalized linked		
		list: [3]		
		(a, b (c, d (e, g), h) (f))		
	<i>(b)</i>	Write an algorithm for postfix evaluation with suitable		
		example. [6]		
	(c)	Write a pseudo C code to reverse singly linked list. [3]		

4.	(a)	Convert the following prefix expression into postfix. * + a
		-bc / -de + -fgh [3]
	(<i>b</i>)	Write an algorithm to convert infix expression to postfix
		expression. [6]
	(c)	Write an algorithm to delete intermediate node from Doubly
		linked list. [3]
5.	(a)	What is circular queue ? Explain the advantages of circular
		queue over linear queue. [6]
	(<i>b</i>)	Write pseudo C/C++ code to represent queue as an ADT. [7]
		Or
6.	(a)	Explain array implementation of priority queue with all basic
	1	operations. [6]
	(<i>b</i>)	Write pseudo C/C++ code to implement circular queue using
		linked list. [7]
7.	(a)	Explain quick sort and sort the given list using quick sort:
		39, 09, 81, 45, 90, 27, 72, 18 [6]
	(<i>b</i>)	Write an algorithm for binary search. Derive recurrence
		relation and find out time complexity of the search. [7]
		Or
8.	(a)	Explain heap sort and sort the given list using heap sort:
		08, 03, 02, 11, 05, 14, 00, 02, 09, 04, 20. [6]
	<i>(b)</i>	Write a short note an stability of sorting. Compare bubble
		sort, insertion sort and selection sort with one example and
		discuss time complexity. [7]
		sort, insertion sort and selection sort with <i>one</i> example and discuss time complexity. [7]
[5152]	-563	2
		A. T.