Pune Vidyarthi Griha’s

AN
oy &

‘ "\°-
=

COLEGE OF ENGINEERING, NASHIK - 3.

“Introduction to Algorithm &
Data Structure”

-

Prepared By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

10 July 2019

ALGORITHMS

ALGORITHM - PROBLEM SOLVING

COMPUTER :

“Computer 1s multi purpose Electronic Machine which 1s
used for storing , organizing and processing data by set of
program

Problem :
“Problem 1s defined as situation or condition which needs
to solve to achive goal”

Steps in Problem Solving :

Define the problem

Data gathering

Decide effective solution
Implement and evaluate the solution
Review the result.

Ul B W

PROBLEM SOLVING TECHNIQUES

There are two types :
1. Algorithmic
2. Flowchart

Algorithms is set of instructions which arae writeen in simple
english language.

Flowchart is graphical representation of the algorithms.

Steps of the Problem Solving Process

2. Analyze the Probleom:
1. Delfine the Problem: Why is it happening?
WWhat is the problem?

M Develop a Plan:
N What arc we
S. Evalvate the Plan: 7»- _— __——-
Did the plan work? \

going to do?

4. Implement the Plan:
Carry out the intervention

Some other Problem Solving
Techniques

1. Trial and error techniques

2. Divide and conguer techniques
3. Merging solution

4. The building block approach
5. Brain storming techniques

6. Solve by analogy.

INTRODUCTION OF ALGORITHMS

DEFINITION :

“An algorithm is defined as a step-by-step procedure or method for
solving a problem by a computer in a finite number of steps.”

From the data structure point of view, following are some important
categories of algorithms —

Search — Algorithm to search an item in a data structure.

Sort — Algorithm to sort items 1n a certain order.

Insert — Algorithm to insert item 1n a data structure.

Update — Algorithm to update an existing item in a data structure.

Delete — Algorithm to delete an existing item from a data structure.

CHARACTRISTICS OF ALGORITHM

1. Unambiguous — Algorithm should be clear and unambiguous. Each of
Its steps (or phases), and their inputs/outputs should be clear and must
lead to only one meaning.

2. Input — An algorithm should have 0 or more well-defined inputs.

3. Output — An algorithm should have 1 or more well-defined outputs,
and should match the desired output.

4. Finiteness — Algorithms must terminate after a finite number of steps.
5. Feasibility — Should be feasible with the available resources.

6. Independent — An algorithm should have step-by-step directions,

which should be independent of any programming code.

EXAMPLE OF ALGORITHM

Example _ P _
Let's try to learn algorithm-writing by using an example.

Problem — Design an algorithm to add two numbers and display the result.

Step 1 — START
Step 2 — declare three integers a,b & C
Step 3 — define values ofa & b

Step 4 — add values of a & b

Step 5 — store output of step 4 to ¢
Step 6 — print C

Step 7 — STOP °

ALGORITHM DESIGN TOOL

 There can be two tools :
1. Flowchart
2. Pseudo Code

Flowchart :

“ Flowchart 1s graphical representation of the algorithms”

Pseudo Code :

“It 1s simply an implementation of an algorithm in the form of

annotations and informative text written in plain English.

o+ PROF. ANAND GHARU(PVGCOE
NASHIK)

FLOWCHART

Svmbol used in Flowchart :
Flowchart Symbols

SYMBOL /SHAPE NAME FUNCTION
(-.) Terminator -show the start and stop points in
- a process
Decition -used when there are 2 or 3
~ options (Yes/No)
O Connector -show a jump from one point in
the process flow to another

Data (Input/Output) -indicates 1inputs and outputs from
a process

Ay
< > Preparation -set-up operation
|]

-represents a process, action, or
function

Process

I" \ Manual Input -represents the manual input of
data into a computer(keyboard)

-show the direction that the
process flows

_) Flow line

Name | Symbol

Start or Stop

Frocess

Decision

Input or Output

Connector

Direction of flow

Decision

The beginning and end points in the sequence.

An instruction or a command.

A decision, either yes or no.

An input i1s data received by a computer. An
output I1s a signal or data sent from a computer.

A jump from one point in the sequence to
another.

Connects the symbols. The ammow shows the
direction of flow of instructions.

Picture Action

Represented
) Oval Terminal Symbol S ot o2 e Pragfaih
[7 Parallelogram Input/Output et
| E— Rectangle Process e e e
operator
’ Diamond Decision skasaios Snmlio Aoty
represent logical test for the
program
- Hexagon Initialization/ S e of m e
Preparation
< Arrow Lines & Direction bihekodiin il
pls=== Arrow Heads
—f Annotation danciibe soslon o variablon
. Circle On page bl et i
connector
W Pentagon Off-page I GRrRiA 82 dnatha oart o e
connector page orpapst

EXAMPLE OF FLOWCHART

(start)

-

l Declare variables numl, num22 and sum I

.."' Read numl and /
f num?22 /

EXAMPLE FOR ALGORITH & FLOWCHART
Stepl: Start

Step2: Initialize the count variable to zero

Step3: Initialize the sum variable to zero

Step4: Read a number say X

Step 5: Add 1 to the number In the count variable

Step6: Add the number x to the sum variable.

Step7: Is the count variable in the memory greater than
507 If yes, display the sum: go to step 8. If
No, Repeat from step 4

Step8: Stop

Design an algorithm and flowchart to input
fifty numbers and calculate their sum.

Start

<

x=1, sum=0

!

Read n

!

Sum=—sum-+x

Il

=x+1

v

YES

Is x<=50

J NO
Display Sum

v

® Stop ®

WRITE A PROGRAM FOR ADDING 10 NUMBERS

Write an algorithm for adding 10 numbers. G

Solution : | m

Algorithm as a series as steps

Step 1 : Assign 10 to N N=1OI’=SL1”‘A=0'

Step 2 : Assign 0 to SUM

WRITE A PROGRAM TO FIND FACTORIAL OF
NUMBER

Algorithm as a series of steps

Stepl: readn
Step 2 : Assign 1 to fact
Step 3 ifn<=0thengotostep7

Stepd: Assign n*fact to fact
StepS5: Assignn-1ton

Step6: gotostep
} ol ’ w 1 o) |
R, ., Y - A
- G AR - FTIint 1act
L [P S 3.":“?i.‘-.g‘-‘?;‘:.‘::-}.!"?(':' R 5

-

v : o
-~

s AN &S ”".L"
" 9 Vi
) i EX('. e
— -

DIFFERENT APPROCHES TO DESIGN ALGORITHMS

Types of approach :
1. Top down approach
2. Bottom up approach

TOP DOWN APPROACH BOTTOM UP APPROACH

1. Larger problem divided into smaller |Smaller pieces are combined together

2. Execution Start from top to down Execution start from bottom to top
3. Cis top down approach language C++ is bottom up approach language
4. Main() is written at beginning Main() is written at end of program

ALGORITHM ANALYSIS

* A Priori Analysis — This Is a theoretical analysis of an algorithm.
Efficiency of an algorithm Is measured by assuming that all other
factors, for example, processor speed, are constant and have no effect

on the implementation.

« A Posterior Analysis — This iIs an empirical analysis of an algorithm.

The selected algorithm is implemented using programming language.

This Is then executed on target computer machine. In this analysis,

actual statistics like running time and space required, are collected.

o+ PROF. ANAND GHARU(PVGCOE
NASHIK)

CASES OF ANALYSIS ALGORITHMS

Worst-Case Analysis

There are 3 types interested in the worst-case behaviour
» A determination of the maximum amount of time that an algonthm

1 . WO rSt Case requires to solve problems of size n
2 . BeSt case Best-Case Analysis

Interested In the best-.case behaviour

3. Average case — Merueem

Average-Case Analysis

2 A determination of the average amount of ime that an algonthm
requires to solve problems of size n

» Have to know the probability distribution
3 The hardest

Best Case — Minimum time required for program execution.
Average Case — Average time required for program execution.

Worst Case — Maximum time required for program execution

Standard measure of efficiency

There are two important complexity measures:
1. Time complexity
2. Space complexity

Time complexity :
“The time which 1s required for analysis of given problem
of particular size is known as time complexity”

Space complexity :
“The amount of computer memory required tp solve the
given problem of particular size is called as space complexity”

Time efficiency - a measure of amount of time for an algorithm to execute.

Space efficiency - a measure of the amount of memory needed for an algorithm to

execute.

LA e !

Asymptotic notations

Asymptotic Notations are languages that allow us to
analyze an algorithm's running time by Iidentifying its
behavior as the input size for the algorithm increases. This Is
also known as an algorithm's growth rate

Asymptotic Notation gives us the ability to answer
these questions.

Following are the commonly used asymptotic notations
to calculate the running time complexity of an
algorithm,

1. O Notation

2. Q Notation

3. @ Notation

BIG - oh NOTATION

Big Oh Notation, O

The notation O(n) Is the formal way to express the upper
bound of an algorithm's running time. It measures the worst
case time complexity or the longest amount of time an

algorithm can possibly take to complete.

4

V<= "

K

For example, for a function f{(n)

O{Ff(n)) = { gi{n) : there ex2ztz c > @ and ng such that f(n) s c.gin) for 3all n > ng. }

Omega NOTATION

Omega Notation, Q

The notation Q(n) Is the formal way to express the lower
bound of an algorithm's running time. It measures the best
case time complexity or the best amount of time an
algorithm can possibly take to comp

;'/ : :

K

For example, for a function f(n)

Q(Ff(n)) 2 { g{n) : there exizts ¢ > € and ng such that g(n)} 2 c.f(n) for all n > ng. }

Theta NOTATION

Theta Notation, 6

The notation 06(n) Is the formal way to express both the
lower bound and the upper bound of an algorithm's running
time. It Is represented as follows —

4

8(f(n)) = { g{n) if and only if g{n) = O(f(n)) and 5(n) = O(F(n)) for all n > ng. }

Common Asymptotic Notation

Following 1s a hist of some common asymptotic notations -

constant - (1)
laganthmic - O(log n}
inear - O(n)

nlog n - O{n log n)
quadratic - o(n<)

cubic - o(n¥)
polynomial — noi1)

exponential — 0(n)

DATA
STRUCTURE

DATA STRUCTURE

Data Structure 1S a way to store and
organize data so that it can be used efficiently:.

Data :
“Data IS nothing but collection of information 1I.e.

facts or figures.”

Data Object :
“Data object Is a region of storage that

contains a value or group of value”

NEED OF DATA STRUCTURE

. Stores huge data

. Stores data In systematic way
Retains logical relationship

. Provides various structure

. Static and dynamic formats

. Better algorithms

ABSTRACT DATA TYPE

ADT :

“Abstract data types are mathematical models of a set
of data values or information that share similar behavior or qualities and
that can be specified and Identified iIndependent of specific
Implementations. Abstract data types, or ADTs, are typically used In

algorithms.”

Another definition of ADT is

ADT isset of D, F and A.

D — domain = Data object

F — function = set of operation which cannt carried out on data object.

A —axioms = Properties and rule of the operation °

TYPES OF DATA STRUCTURE

There are two types :
1. Primitives data structure

2. Non-primitive data structure

‘ Data Structures \

TYPES OF DATA STRUCTURE

1. Primitives data structure :
“Primitive data structures are those which are predefined way of
storing data by the system. ”

e.g. Int, char, float etc

2. Non-primitive data structure :

“The data types that are derived from primary data types are known
as non-Primitive data types. These datatype are used to store group of
values.”

e.g. struct, array, linklist, stack, tree , graph etc.

Linear and Non-Linear Data
Structure

1. Linear Data Strucute :

“Linear data structuretraverses the data elements
sequentially, in which only one data element can directly be
reached”

Ex: Arrays, Linked Lists, stack, queue.

2. Non-Linear Data Strucute :

“Every data item Is attached to several other data items in a
way that Is specific for reflecting relationships.”

Ex: Graph, Tree

Linear vs Non-Linear Data
Structure

LINEAR DATA STRUCTURES

NON-LINEAR DATA STRUCTURES

Linear Data structures are used to represent
sequential data.

Non-lineardata structures are used to
represent hierarchical data.

Linear data structures are easy to implement

These data structures are difficultto
implement.

Implementation: Linear data structures are
implemented using array and linked lists

Implementation: Non-lineardata structures
are mostly implemented using linked lists.

e.g: The basic linear datastructures are list,
stack and queue.

e.g: The basic non-lineardata structures are
trees and graphs.

For the implementation of linear data
structures, we don’t need non-linear data
structures.

For the implementation of non-lineardata
structures, we need linear data structures.

USE: These are mostly used in application
software development.

USE: These are used for the development of
game theory, artificial intelligence, image
processing

Static and Dynamic
Data Structure

1. Static data strucure :

“A static data structure Is an organization or collection
of data in memory that Is fixed In size.”

Ex: Arrays |” | |ﬂ, | =TT "]

T 4 5 = 7 a] = Array indices

Hurray Lempgth =5
Fir=t Imde=x =10
La=t lrvcdicw = &

2. Dynamic Data Strucute :

“In Dynamic data structure the size of the structure In not
fixed and can be modified during the operations performed on It”

Ex: Linked list

TR TR T

Dala FEXD

Persistent and Ephemeral
Data Structure

1. Persistent data strucure :

“A persistent data structure Is a data structure that
always preserves the previous version of itself when it Is
modified..”

Ex: Linked list, tree
2. Ephemeral Data Strucute :

“ An ephemeral data structure I1s one of which only one
version Is available at a time(it does not preserve previous
version).”

Ex: RAM , Cache memory

Relationship among Data, Data
Structure and Algorithms

Data Is considered as set of facts and figures or data Is value of
group of value which is in particular format.

Data structure is method of gathering as well as organizing data
In such manner that several operation can be performed

Problem 1Is defined as a situation or condition which need to
solve to achieve the goals

Algorithm 1s set of ordered instruction which are written iIn
simple english language.

ALGORITHMIC STRATEGIES

Algorithm design strategies are the general approaches used to
develop efficient solution to problem.

Algorithm Strategies are :

1. Divide and conquer

2. Merge sort

3. Recursive algorithm

4. Backtracking algorithms
5. Heuristic algorithms

6. Dynamic Programming algorithm e

DIVIDE AND CONQUER

In divide and conquer approach, the problem in hand, is divided into
smaller sub-problems and then each problem iIs solved independently.
When we keep on dividing the subproblems into even smaller sub-
problems, we may eventually reach a stage where no more division IS
possible. Those "atomic" smallest possible sub-problem (fractions) are
solved. The solution of all sub-problems is finally merged In order to
obtain the solution of an original problem.

[problem |

divicle

s lve s ve

conguer subproblem subproblem

corrrrbinne

solution to
© problem o

DIVIDE AND CONQUER

Operation for strategy :

Divide — Break the problem into subproblem of same type
Conquer — Recursively solve these sub problem
Combine — Combine the solution of sub problem

Following algorithms are based on divide and conquer
strategies :

1. Merge sort

2. Binary search
3. Quick sort

4. Closest pair

b. .Tower of Hanol

DIVIDE AND CONQUER

1. Merge sort :

Merge Sort I1s a Divide and Conguer algorithm. It divides Input array In
two halves, calls itself for the two halves and then merges the two sorted
halves. The merge() function Is used for merging two halves. The
merge(arr, I, m, r) Is key process that assumes that arr[l..m] and
arr[m+1..r] are sorted and merges the two sorted sub-arrays into one.

How MergeSort Algorithm Works Internally

5. Merge the divided sorted arrays together

1. Divide the array into two parts |3EI 27 a3 | 3 g g2 |10
-_.-"- .\--\'-\.__
X T . e
2. Divide the array into two parts again
¥ PSS 38 | 27 43 | 3 5 | B2 10
I
S |I " |
-~ L 4 ¥ - ¥ i 1
3. Break each element into single | 33 l 27 I 43 r 3 I 5 B2 l 10
— | I — | — L | : I
y e 1 .-' i
- 1 » I 4 |
- = | 4
4. Sart the slemeants fram smallest to largest | <0 | 3° 3| = 9 B2 | 1a
= - - — = o | -
-H-"'\.
- |
| 3|27 | = | 4F % | 10 |EE |

6. The array has been sarted | R | 0 27 | 38 | 43 | B2

https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

DIVIDE AND CONQUER

2. Tower of Hanol :

Tower of Hanol Is a mathematical puzzle where we have three rods and n
disks. The objective of the puzzle is to move the entire stack to another
rod, obeying the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and
placing it on top of another stack 1.e. a disk can only be moved If it Is the
uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk. .

DIVIDE AND CONQUER

2. Tower of Hanol : Example

3 DISKS

ALl A1l
AL

GREEDY STRATEGIES

Greedy algorithm :

An algorithm 1s designed to achieve optimum solution for a given
problem. In greedy algorithm approach, decisions are made from the
given solution domain. As being greedy, the closest solution that seems
to provide an optimum solution is chosen.

Example of greedy strategy :

1. Travelling Salesman Problem

2. Prim's Minimal Spanning Tree Algorithm

3. Kruskal's Minimal Spanning Tree Algorithm

4. Dijkstra's Minimal Spanning Tree Algorithm
5. Knapsack Problem
6. Job Scheduling Problem

GREEDY STRATEGIES

1. Minimum Spanning tree (Prims or Kruskal’s algorithms)

The cost of the spanning tree is the sum of the weights of all the edges
In the tree. There can be many spanning trees. Minimum spanning tree Is
the spanning tree where the cost is minimum among all the spanning
trees. There also can be many minimum spanning trees.

GREEDY STRATEGIES

2. Kruskal’s algorithms :

Kruskal’s Algorithm builds the spanning tree by adding edges one by

one Into a growing spanning tree. Kruskal's algorithm follows greedy

approach as

In each Iteration it finds an edge which has least weight and

add It to the growing spanning tree.

Algorithm Steps :

Sort the graph edges with respect to their weights.

Start adding

edges to the MST from the edge with the smallest weight

until the edge of the largest weight.

Only add ec

disconnecteo

ges which doesn't form a cycle , edges which connect only

components.

GREEDY STRATEGIES

2. Kruskal’s algorithms : Example

Kruskal’s Algorithm

GREEDY STRATEGIES

2. Prims algorithm: Prim’s Algorithm also use Greedy approach to find
the minimum spanning tree. In Prim’s Algorithm we grow the spanning
tree from a starting position. Unlike an edge iIn Kruskal's, we
add vertex to the growing spanning tree in Prim's.

Algorithm Steps:

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the

minimum and add It to the tree.

3. Keep repeating step 2 until we get a minimum spanning tree.

GREEDY STRATEGIES

2. Prims algorithm: Example

Prim’s Algorithm

l. 1
\ 5 B 4:3 ,
05\0 & 5\0

Recurrence Relation

Recurrence relation :

“A recurrence relation Is an equation that recursively defines a
sequence where the next term Is a function of the previous terms

(Expressing FnFn as some combination of FiFI with I<ni<n).”

Example — Fibonacci series — Fn=Fn—1+Fn—2

Recurrence Relation

Types Recurrence relation :

1. Linear recurrence relations —

Following are some of the examples of recurrence relations based on linear
recurrence relation.

T(n) =T(n-1) + nforn>0and T(0) =1

These types of recurrence relations can be easily soled using substitution
method (Put link to substitution method).

For example,
T(n) =T(n-1) +n
=T(n-2) + (n-1) +n
= T(n-k) + (n-(k-1))..... (n-1) + n
Substituting k = n, we get
Imy=10)+1+2+... +n =n(n+1)/2 = 0O(n"™2) .

Recurrence Relation

Types Recurrence relation :

1. Homogeneous linear recurrence relation —

Homogeneous refers to the fact that the total degree of each term is the
same (thus there Is no constant term) Constant Coefficients refers to the
fact that c1,c2,...,ck are fixed real numbers that do not depend on n. ...
The recurrence relation An = (1.04)An—1 1s a linear homogeneous
recurrence relation of degree one.

Definition 1. A hinear homogeneous recurrence relation of degree k& with constant coefficients s a recurrence
relation of the form

Ap = C1dp—1 T C2flp—2 T T Ckplly—k, |:"+":'
where o, 0o, ..., cr = R and cp # ().
Linear refers to the fact that a,, . a,—2..... ,—} appear in separate terms and to the first power.
Homogeneous refers to the fact that the total degree of each term is the same (thus there is no constant term |
Lonstant Coethcients refers to the fact that ¢, e0,. .., ¢ are ixed real numbers that do not depend on n.

Degree k& refers to the fact that the expression for a,, contains the previous £ terms a, . a,-2,..., Gy k.

A consequence of the second principle of mathematical induction is that a sequence satisfving the recurrence
relation in the definition (*) 15 uniquely determined once we know the values of a; in the & initial conditions

P L T
iy = {r.q]-n!l = 1= s k1 = E-L'—I.-

Type of Recurrence Relation

Generating Functions

Generating Functions represents sequences where each term of a sequence IS
expressed as a coefficient of a variable x in a formal power series.

Mathematically, for an infinite sequence, say a0,al,az2,...,ak,...,a0,al,az2,...,ak,..., the
generating function will be —

GX=agta,X+aXx2+:--+a X+--=>"a,xX
Some Areas of Application
Generating functions can be used for the following purposes —

- For solving a variety of counting problems. For example, the number of ways to
make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, Rs.5,
Rs.10, Rs.20 and Rs.50

- For solving recurrence relations

- For proving some of the combinatorial identities

- For finding asymptotic formulae for terms of sequences

THANK YOU!!!

Blog : anandgharu.wordpress.com
gharu.anand@gmail.com

