
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“Introduction to Algorithm &

Data Structure”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

10 July 2019
.

ALGORITHMS

ALGORITHM – PROBLEM SOLVING
COMPUTER :

 “Computer is multi purpose Electronic Machine which is

used for storing , organizing and processing data by set of

program

Problem :

 “Problem is defined as situation or condition which needs

to solve to achive goal”

Steps in Problem Solving :

1. Define the problem

2. Data gathering

3. Decide effective solution

4. Implement and evaluate the solution

5. Review the result.

PROBLEM SOLVING TECHNIQUES

There are two types :

1. Algorithmic

2. Flowchart

Algorithms is set of instructions which arae writeen in simple
english language.

Flowchart is graphical representation of the algorithms.

Some other Problem Solving
Techniques

1. Trial and error techniques

2. Divide and conquer techniques

3. Merging solution

4. The building block approach

5. Brain storming techniques

6. Solve by analogy.

INTRODUCTION OF ALGORITHMS

DEFINITION :

 “An algorithm is defined as a step-by-step procedure or method for

solving a problem by a computer in a finite number of steps.”

From the data structure point of view, following are some important

categories of algorithms −

Search − Algorithm to search an item in a data structure.

Sort − Algorithm to sort items in a certain order.

Insert − Algorithm to insert item in a data structure.

Update − Algorithm to update an existing item in a data structure.

Delete − Algorithm to delete an existing item from a data structure.

CHARACTRISTICS OF ALGORITHM

1. Unambiguous − Algorithm should be clear and unambiguous. Each of

its steps (or phases), and their inputs/outputs should be clear and must

lead to only one meaning.

2. Input − An algorithm should have 0 or more well-defined inputs.

3. Output − An algorithm should have 1 or more well-defined outputs,

and should match the desired output.

4. Finiteness − Algorithms must terminate after a finite number of steps.

5. Feasibility − Should be feasible with the available resources.

6. Independent − An algorithm should have step-by-step directions,

which should be independent of any programming code.

EXAMPLE OF ALGORITHM
Example
Let's try to learn algorithm-writing by using an example.

Problem − Design an algorithm to add two numbers and display the result.

Step 1 − START

Step 2 − declare three integers a, b & c

Step 3 − define values of a & b

Step 4 − add values of a & b

Step 5 − store output of step 4 to c

Step 6 − print c

Step 7 − STOP

ALGORITHM DESIGN TOOL
• There can be two tools :

1. Flowchart

2. Pseudo Code

Flowchart :

 “ Flowchart is graphical representation of the algorithms”

Pseudo Code :

 “It is simply an implementation of an algorithm in the form of

annotations and informative text written in plain English.

PROF. ANAND GHARU(PVGCOE

NASHIK)

FLOWCHART
Symbol used in Flowchart :

EXAMPLE OF FLOWCHART

EXAMPLE FOR ALGORITH & FLOWCHART

Step1: Start

Step2: Initialize the count variable to zero

Step3: Initialize the sum variable to zero

 Step4: Read a number say x

Step 5: Add 1 to the number in the count variable

Step6: Add the number x to the sum variable.

Step7: Is the count variable in the memory greater than

50? If yes, display the sum: go to step 8. If

No, Repeat from step 4

Step8: Stop

Design an algorithm and flowchart to input
fifty numbers and calculate their sum.

WRITE A PROGRAM FOR ADDING 10 NUMBERS

WRITE A PROGRAM TO FIND FACTORIAL OF
NUMBER

DIFFERENT APPROCHES TO DESIGN ALGORITHMS

Types of approach :

1. Top down approach

2. Bottom up approach

TOP DOWN APPROACH BOTTOM UP APPROACH

1. Larger problem divided into smaller Smaller pieces are combined together

2. Execution Start from top to down Execution start from bottom to top

3. C is top down approach language C++ is bottom up approach language

4. Main() is written at beginning Main() is written at end of program

ALGORITHM ANALYSIS
• A Priori Analysis − This is a theoretical analysis of an algorithm.

Efficiency of an algorithm is measured by assuming that all other

factors, for example, processor speed, are constant and have no effect

on the implementation.

• A Posterior Analysis − This is an empirical analysis of an algorithm.

The selected algorithm is implemented using programming language.

This is then executed on target computer machine. In this analysis,

actual statistics like running time and space required, are collected.

PROF. ANAND GHARU(PVGCOE

NASHIK)

CASES OF ANALYSIS ALGORITHMS

There are 3 types.

1. Worst case

2. Best case

3. Average case

Best Case − Minimum time required for program execution.

Average Case − Average time required for program execution.

Worst Case − Maximum time required for program execution

Standard measure of efficiency
There are two important complexity measures:
1. Time complexity
2. Space complexity

Time complexity :
 “The time which is required for analysis of given problem
of particular size is known as time complexity”

Space complexity :
 “The amount of computer memory required tp solve the

given problem of particular size is called as space complexity”

Time efficiency - a measure of amount of time for an algorithm to execute.

Space efficiency - a measure of the amount of memory needed for an algorithm to

execute.

Asymptotic notations
Asymptotic Notations are languages that allow us to
analyze an algorithm's running time by identifying its
behavior as the input size for the algorithm increases. This is
also known as an algorithm's growth rate

 Asymptotic Notation gives us the ability to answer
these questions.

Following are the commonly used asymptotic notations
to calculate the running time complexity of an
algorithm.
1. Ο Notation
2. Ω Notation
3. θ Notation

BIG – oh NOTATION
Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper

bound of an algorithm's running time. It measures the worst

case time complexity or the longest amount of time an

algorithm can possibly take to complete.

Omega NOTATION
Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower

bound of an algorithm's running time. It measures the best

case time complexity or the best amount of time an

algorithm can possibly take to comp

Theta NOTATION
Theta Notation, θ

The notation θ(n) is the formal way to express both the

lower bound and the upper bound of an algorithm's running

time. It is represented as follows −

Common Asymptotic Notation

DATA
STRUCTURE

DATA STRUCTURE
Data Structure is a way to store and

organize data so that it can be used efficiently.

Data :

“Data is nothing but collection of information i.e.

facts or figures.”

Data Object :

 “Data object is a region of storage that

contains a value or group of value”

NEED OF DATA STRUCTURE

1. Stores huge data

2. Stores data in systematic way

3. Retains logical relationship

4. Provides various structure

5. Static and dynamic formats

6. Better algorithms

ABSTRACT DATA TYPE
ADT :

 “Abstract data types are mathematical models of a set

of data values or information that share similar behavior or qualities and

that can be specified and identified independent of specific

implementations. Abstract data types, or ADTs, are typically used in

algorithms.”

Another definition of ADT is

ADT is set of D, F and A.

D – domain = Data object

F – function = set of operation which cannt carried out on data object.

A – axioms = Properties and rule of the operation

TYPES OF DATA STRUCTURE
There are two types :

1. Primitives data structure

2. Non-primitive data structure

TYPES OF DATA STRUCTURE
1. Primitives data structure :

 “Primitive data structures are those which are predefined way of

storing data by the system. ”

e.g. int, char, float etc

2. Non-primitive data structure :

 “The data types that are derived from primary data types are known

as non-Primitive data types. These datatype are used to store group of

values.”

e.g. struct, array, linklist, stack, tree , graph etc.

Linear and Non-Linear Data
Structure

 1. Linear Data Strucute :

 “Linear data structuretraverses the data elements

sequentially, in which only one data element can directly be

reached”

Ex: Arrays, Linked Lists, stack, queue.

2. Non-Linear Data Strucute :

 “Every data item is attached to several other data items in a

way that is specific for reflecting relationships.”

Ex: Graph , Tree

Linear vs Non-Linear Data
Structure

Static and Dynamic
Data Structure

 1. Static data strucure :

 “A static data structure is an organization or collection

of data in memory that is fixed in size.”

Ex: Arrays

2. Dynamic Data Strucute :

 “ In Dynamic data structure the size of the structure in not

fixed and can be modified during the operations performed on it”

Ex: Linked list

Persistent and Ephemeral
Data Structure

 1. Persistent data strucure :

 “A persistent data structure is a data structure that

always preserves the previous version of itself when it is

modified..”

Ex: Linked list, tree

2. Ephemeral Data Strucute :

 “ An ephemeral data structure is one of which only one

version is available at a time(it does not preserve previous

version).”

Ex: RAM , Cache memory

Relationship among Data, Data
Structure and Algorithms

 Data is considered as set of facts and figures or data is value of

group of value which is in particular format.

Data structure is method of gathering as well as organizing data

in such manner that several operation can be performed

Problem is defined as a situation or condition which need to

solve to achieve the goals

Algorithm is set of ordered instruction which are written in

simple english language.

ALGORITHMIC STRATEGIES

 Algorithm design strategies are the general approaches used to

develop efficient solution to problem.

Algorithm Strategies are :

1. Divide and conquer

2. Merge sort

3. Recursive algorithm

4. Backtracking algorithms

5. Heuristic algorithms

6. Dynamic Programming algorithm

DIVIDE AND CONQUER

 In divide and conquer approach, the problem in hand, is divided into

smaller sub-problems and then each problem is solved independently.

When we keep on dividing the subproblems into even smaller sub-

problems, we may eventually reach a stage where no more division is

possible. Those "atomic" smallest possible sub-problem (fractions) are

solved. The solution of all sub-problems is finally merged in order to

obtain the solution of an original problem.

DIVIDE AND CONQUER

Operation for strategy :

Divide – Break the problem into subproblem of same type

Conquer – Recursively solve these sub problem

Combine – Combine the solution of sub problem

Following algorithms are based on divide and conquer

strategies :

1. Merge sort

2. Binary search

3. Quick sort

4. Closest pair

5. Tower of Hanoi

DIVIDE AND CONQUER

1. Merge sort :

 Merge Sort is a Divide and Conquer algorithm. It divides input array in

two halves, calls itself for the two halves and then merges the two sorted

halves. The merge() function is used for merging two halves. The

merge(arr, l, m, r) is key process that assumes that arr[l..m] and

arr[m+1..r] are sorted and merges the two sorted sub-arrays into one.

https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/
https://www.geeksforgeeks.org/divide-and-conquer-introduction/

DIVIDE AND CONQUER

2. Tower of Hanoi :

 Tower of Hanoi is a mathematical puzzle where we have three rods and n

disks. The objective of the puzzle is to move the entire stack to another

rod, obeying the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack i.e. a disk can only be moved if it is the

uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.

DIVIDE AND CONQUER

2. Tower of Hanoi : Example

GREEDY STRATEGIES

Greedy algorithm :

 An algorithm is designed to achieve optimum solution for a given

problem. In greedy algorithm approach, decisions are made from the

given solution domain. As being greedy, the closest solution that seems

to provide an optimum solution is chosen.

Example of greedy strategy :

1. Travelling Salesman Problem

2. Prim's Minimal Spanning Tree Algorithm

3. Kruskal's Minimal Spanning Tree Algorithm

4. Dijkstra's Minimal Spanning Tree Algorithm

5. Knapsack Problem

6. Job Scheduling Problem

GREEDY STRATEGIES

1. Minimum Spanning tree (Prims or Kruskal’s algorithms)

 The cost of the spanning tree is the sum of the weights of all the edges

in the tree. There can be many spanning trees. Minimum spanning tree is

the spanning tree where the cost is minimum among all the spanning

trees. There also can be many minimum spanning trees.

GREEDY STRATEGIES

2. Kruskal’s algorithms :

 Kruskal’s Algorithm builds the spanning tree by adding edges one by

one into a growing spanning tree. Kruskal's algorithm follows greedy

approach as in each iteration it finds an edge which has least weight and

add it to the growing spanning tree.

Algorithm Steps :

Sort the graph edges with respect to their weights.

Start adding edges to the MST from the edge with the smallest weight

until the edge of the largest weight.

Only add edges which doesn't form a cycle , edges which connect only

disconnected components.

GREEDY STRATEGIES

2. Kruskal’s algorithms : Example

 .

GREEDY STRATEGIES

2. Prims algorithm: Prim’s Algorithm also use Greedy approach to find

the minimum spanning tree. In Prim’s Algorithm we grow the spanning

tree from a starting position. Unlike an edge in Kruskal's, we

add vertex to the growing spanning tree in Prim's.

Algorithm Steps:

1. Initialize the minimum spanning tree with a vertex chosen at random.

2. Find all the edges that connect the tree to new vertices, find the

minimum and add it to the tree.

3. Keep repeating step 2 until we get a minimum spanning tree.

GREEDY STRATEGIES

2. Prims algorithm: Example

Recurrence Relation

Recurrence relation :

 “A recurrence relation is an equation that recursively defines a

sequence where the next term is a function of the previous terms

(Expressing FnFn as some combination of FiFi with i<ni<n).”

Example − Fibonacci series − Fn=Fn−1+Fn−2

 .

Recurrence Relation

Types Recurrence relation :

1. Linear recurrence relations –
Following are some of the examples of recurrence relations based on linear

recurrence relation.

T(n) = T(n-1) + n for n>0 and T(0) = 1

These types of recurrence relations can be easily soled using substitution

method (Put link to substitution method).

For example,

T(n) = T(n-1) + n

 = T(n-2) + (n-1) + n

 = T(n-k) + (n-(k-1))….. (n-1) + n

Substituting k = n, we get

T(n) = T(0) + 1 + 2+….. +n = n(n+1)/2 = O(n^2)

 .

Recurrence Relation

Types Recurrence relation :

1. Homogeneous linear recurrence relation –
Homogeneous refers to the fact that the total degree of each term is the

same (thus there is no constant term) Constant Coefficients refers to the

fact that c1,c2,...,ck are fixed real numbers that do not depend on n. ...

The recurrence relation An = (1.04)An−1 is a linear homogeneous

recurrence relation of degree one.

 .

Type of Recurrence Relation

Generating Functions

Generating Functions represents sequences where each term of a sequence is

expressed as a coefficient of a variable x in a formal power series.

Mathematically, for an infinite sequence, say a0,a1,a2,…,ak,…,a0,a1,a2,…,ak,…, the

generating function will be −

Gx=a0+a1x+a2x
2+⋯+akx

k+⋯=∑akx
k

Some Areas of Application

Generating functions can be used for the following purposes −

- For solving a variety of counting problems. For example, the number of ways to

make change for a Rs. 100 note with the notes of denominations Rs.1, Rs.2, Rs.5,

Rs.10, Rs.20 and Rs.50

- For solving recurrence relations

- For proving some of the combinatorial identities

- For finding asymptotic formulae for terms of sequences

 .

THANK YOU!!!
Blog : anandgharu.wordpress.com

 gharu.anand@gmail.com

