
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“Linear Data Structure using

Squential Organization”

By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

10 July 2019
.

1

SEQUENTIAL ORGANIZATION

• Definition :

 “In computer science, sequential access means that a

group of elements (such as data in a memory array or a disk file or

on magnetic tape data storage) is accessed in a predetermined,

ordered sequence.Sequential access is sometimes the only way of

accessing the data, for example if it is on a tape.”

PROF. ANAND GHARU
2

Linear Data Structure Using

Sequential Organization
• Definition :

 “The data structure where data items are organized

sequentially or linearly one after another is called as

Linear Data Structure”

A linear data structuretraverses the data elements

sequentially, in which only one data element can directly

be reached. Ex: Arrays, Linked Lists.
PROF. ANAND GHARU

3

Array
• Definition :

 “An array is a finite ordered collection of homogeneous
data elements which provides direct access (or random
access) to any of its elements.

An array as a data structure is defined as a set of pairs
(index,value) such that with each index a value is
associated.

• index — indicates the location of an element in an
array.

• value - indicates the actual value of that data element.

Declaration of an array in ‘C++’:

• int Array_A[20];

”

PROF. ANAND GHARU

4

Array
• Array Representation

• Arrays can be declared in various ways in different languages.
For illustration, let's take C array declaration.

• Arrays can be declared in various ways in different languages. For
illustration, let's take C array declaration.

• As per the above illustration, following are the important points to be

considered.

PROF. ANAND GHARU
5

Array
• Array Representation

• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we
can fetch an element at index 6 as 9.

• Basic Operations

• Following are the basic operations supported by an array.

• Traverse − print all the array elements one by one.

• Insertion − Adds an element at the given index.

• Deletion − Deletes an element at the given index.

• Search − Searches an element using the given index or by the
value.

• Update − Updates an element at the given index.

PROF. ANAND GHARU

6

X(Base)
X+1

7

X+2

X+(n-1)

Array A

Fig 2.1 Memory Representation

Memory Representation and Calculation

PROF. ANAND GHARU 7

 The address of the ith element is calculated by the
following formula

(Base address) + (offset of the ith element from base
address)

Here, base address is the address of the first element
where array storage starts.

8

ADDRESS CALCULATION

PROF. ANAND GHARU 8
2

• ADT is useful tool for specifying the logical properties of

a data type.

• A data type is a collection of values & the set of

operations on the values.

• ADT refers to the mathematical concept that defines the

data type.

• ADT is not concerned with implementation but is useful

in making use of data type.

Abstract Data Type

• Arrays are stored in consecutive set of memory

locations.

• Array can be thought of as set of index and values.

• For each index which is defined there is a value

associated with that index.

• There are two operations permitted on array data

structure .retrieve and store

ADT for an array

• CREATE()-produces empty array.

• RETRIVE(array,index)->value

 Takes as input array and index and either returns

appropriate value or an error.

• STORE(array,index,value)-array used to enter new index

value pairs.

ADT for an array

Representation and analysis

Type variable_name[size]

Operations with arrays:

Copy

Delete

Insert

Search

Sort

Merging of sorting arrays.

Introduction to arrays

• #include <stdio.h>

•

• int main()

• {

• int a[100],b[100] position, c n;

•

• printf("Enter number of elements in array\n");

• scanf("%d", &n);

•

• printf("Enter %d elements\n", n);

•

• for (c = 0 ; c < n ; c++)

• scanf("%d", &a[c]);

• printf("Enter %d elements\n", n);

•

• for(c = 0 ; c < n - 1 ; c++)

• printf("%d\n", a[c]);

• //Coping the element of array a to b

• for(c = 0 ; c < n - 1 ; c++)

• {

• b[c]=a[c];

• }
• }

•

• return 0;

• }

Copy operation

Output •

•

• Enter number of elements in array -4

•

• Enter 4 elements

•

 1

• 2

• 3

• 4

• displaying array a

• 1

• 2

• 3

• 4

• displaying array b

• 1

• 2

• 3

• 4

•

 • #include <stdio.h>

•

• int main()

• {

• int array[100], position, i, n;

•

• printf("Enter number of elements in array\n");

• scanf("%d", &n);

•

• printf("Enter %d elements\n", n);

•

• for (i = 0 ; i < n ; i++)

• scanf("%d", &array[i]);

•

• printf("Enter the location where you wish to delete element\n");

• scanf("%d", &position);

•

• for (i = position ; i < n; i++)

o {

• array[i] = array[i+1];

• }

• printf("Resultant array is\n");

•

• for(i = 0 ; i < n-1 ; i++)

• printf("%d\n", array[i]);

• return 0;

• }

Delete operation

Delete operation

 #include <stdio.h>

int main()

{

 int array[100], position, i, n, value;

 printf("Enter number of elements in array\n");

 scanf("%d", &n);

 printf("Enter %d elements\n", n);

 for (i= 0;i< n; i++)

 scanf("%d", &array[i]);

 printf("Enter the location where you wish to insert an element\n");

 scanf("%d", &position);

 printf("Enter the value to insert\n");

 scanf("%d", &value);

 for (i = n - 1; i >= position ; i--)

 array[i+1] = array[i];

 array[position] = value;

 printf("Resultant array is\n");

 for (i= 0; i <= n; i++)

 printf("%d\n", array[i]);

 return 0;

}

Inserting an element

 Inserting an element

Int a[10]={5,4,3,2,1}

for(i=0;i<n-1;i++)

{

 for(j=0;j<=n-1;j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[i];

 a[i]=a[j];

 a[j]=temp;

 }

}

Sort an array

Reverse array
#include <stdio.h>

int main() {

 int array[100], n, i, temp, end;

 scanf("%d", &n);

 end = n - 1;

 for (i = 0; i < n; i++) {

 scanf("%d", &array[i]);

 }

 for (i= 0; < n/2; i++)

 {

 temp = array[i];

 array[i] = array[end];

 array[end] = temp;

 end--;

 }

 printf("Reversed array elements are:\n");

 for (i= 0; i < n; i++) {

 printf("%d\n", array[i]);

 }

 return 0;

}

 Sort element using array

int a[10]={5,4,3,2,1}

for(i=0;i<n;i++)

 for(j=i+1;j<n;j++)

 {

 if(a[i]>a[j])

 {

 temp=a[i];

 a[i]=a[j];

 a[j]=temp;

 }

}

Two-dimensional Arrays
in C

• multidimensional array is the two-dimensional

array

• type arrayName [x][y];

Two-dimensional Arrays
in C

 m-no of rows

 n-no of columns

 Printf(“\n Enter the rows and columns”);

 Scanf(%d %d”,&m,&n);

 for(i=0;i<m;i++)

{

for(j=0;j<n;j++)

 {

Printf(“\n Enter the value of(%d)(%d)=“,i,j);

Scanf(“%d”,&a[i][j]);

}

}

 for(i=0;i<m;i++)

{

Printf(“\n”);

 for(j=0;j<n;j++)

{

printf(“%d”,&a[i][j]);

}

}

 Formally ADT is a collection of domain, operations, and

axioms (or rules)

 For defining an array as an ADT, we have to define its very

basic operations or functions that can be performed on it

 The basic operations of arrays are creation of an array,

storing an element, accessing an element, and traversing

the array

2
6

ARRAY AS AN ADT

PROF. ANAND GHARU 26

 List of operation on Array :-

 1. Inserting an element into an array

 2. deleting element from array

 3. searching an element from array

 4. sorting the array element

27 PROF. ANAND GHARU 27

N -dimensional Arrays

PROF. ANAND GHARU 28

PROF. ANAND GHARU 29

Row-Major representation of 2D array

PROF. ANAND GHARU 30

Three dimensions row-major arrangement

(i*m2*m3) elements

A[0][m2][m3]
A[1][m2][m3] A[i][m2][m3] A[m1-1][m2]

PROF. ANAND GHARU 31

 The address of A[i][j][k] is computed as

 Addr of A[i][j][k] = X + i * m2 * m3 + j * m3 + k

 By generalizing this we get the address of A[i1][i2][i3] … [in] in n-
dimensional array A[m1][m2][m3]. ….[mn]

 Consider the address of A [0][0][0]…..[0] is X then the address of A
[i][0][0]….[0] = X + (i1 * m2 * m3 * - - -- - * mn) and

 Address of A [i1][i2] …. [0] = X + (i1 * m2 * m3 * - -- - *mn) + (i2 *
m3 * m4 *--- * mn)

 Continuing in a similar way, address of A[i1][i2][i3]- - - -[in] will be

 Address of A[i1][i2][i3]----[in] = X + (i1 * m2 * m3 * - - -- - * mn) +

(i2 * m3 * m4 *--- - - * mn)+(i3 * m4 * m5--- * mn + (i4 * m5 * m6--

- - - * mn +…….+ in =

PROF. ANAND GHARU 32

Ex-Arrays
#include <stdio.h>

int main ()

{

 int a[10],i,size;

 printf(“\nhow many no of elements u want to scan”);

 scanf(“%d”,&size);

 printf(“\nEnter the elements in the array”);

 for(i=0;i<size;i++)

 {

 scanf(“%d”,&a[i]);

 } //end for

 for(i=0;i<size;i++)

 {

 printf(“The array is %d”,a[i]); //Displaying Array

 } //end for

 return 0;

}

Output will be

1

2

3

4

5

Multi-dimensional Arrays

in C

• type name[size1][size2]...[sizeN];

Two-dimensional Arrays
in C

• multidimensional array is the two-dimensional array

• type arrayName [x][y];

Two-dimensional Arrays
in C

HOW TO INITIALIZE 2-D

ARRAY IN PROGRAM
• Initializing Two-Dimensional Arrays

int a[3][4] = { {0, 1, 2, 3} , /* initializers for

 {4, 5, 6, 7} ,

 {8, 9, 10, 11} /* initializers for row

/* initializers for row indexed by 2 */ };

 • Accessing Two-Dimensional Array Elements

 int val = a[2][3];

Three-dimensional
Arrays in C

• For example, the following declaration creates a three

dimensional integer array −

• Ex-int threedim[5][10][4];

 Arrays support various operations such as
traversal, sorting, searching, insertion,
deletion, merging, block movement, etc.

41

Insertion of an element into an array

Deleting an element

Memory Representation of Two-Dimensional Arrays

THE CLASS ARRAY

PROF. ANAND GHARU 41

Columns

Col1 col2 coln

A11 A12 A1n

A11 A12 A1n

: : :

Am1 Am2 Amn
m*n

Rows R1

R2

Rm

1 2 3 4

5 6 7 8

42

9 10 11 12

Matrix M =

PROF. ANAND GHARU 42

 Row-major Representation

 Column-major Representation

Row-major representation

PROF. ANAND GHARU 43

Row-major representation

In row-major representation, the elements of Matrix are
stored row-wise, i.e., elements of 1st row, 2nd row, 3rd row,
and so on till mth row

1 2 3 4 5 6 7 8 9 10 11 12

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)
Row1 Row2 Row3

PROF. ANAND GHARU 44

Row major
arrangement

Row 0

Row 1

Row m-1

Row 0

Row 1

Row
m-1

Memory Location

Row-major arrangement in memory , in row major representation
PROF. ANAND GHARU 45

 The address of the element of the ith row and the jth column for matrix of
size m x n can be calculated as:

Addr(A[i][j]) = Base Address+ Offset = Base Address + (number
of rows placed before ith row * size of row) * (Size of Element) +
(number of elements placed before in jth element in ith row)*
size of element

 As row indexing starts from 0, i indicate number of rows before the

ith row here and similarly for j.

For Element Size = 1 the address is

Address of A[i][j]= Base + (i * n) + j

PROF. ANAND GHARU 46

In general,

Addr[i][j] = ((i–LB1) * (UB2 – LB2 + 1) * size) + ((j– LB2) * size)

where number of rows placed before ith row = (i – LB1)

where LB1 is the lower bound of the first dimension.

Size of row = (number of elements in row) * (size of
element)Memory Locations

The number of elements in a row = (UB2 – LB2 + 1)

where UB2 and LB2 are upper and lower bounds of the

second dimension.

PROF. ANAND GHARU 47

Column-major representation

In column-major representation m × n elements of two- dimensional

array A are stored as one single row of columns.

 The elements are stored in the memory as a sequence as first the
elements of column 1, then elements of column 2 and so on till elements
of column n

PROF. ANAND GHARU 48

Column-major arrangement

col1 col2
Col
n-1

Col

0

Col 1

Col 2

…

Memory Location

Column-major arrangement in memory , in column major representation
PROF. ANAND GHARU 49

The address of A[i][j] is computed as
 Addr(A[i][j]) = Base Address+ Offset= Base Address + (number of

columns placed before jth column * size of column) * (Size of
Element) + (number of elements placed before in ith element in ith
row)* size of element

For Element_Size = 1 the address is
 Address of A[i][j] for column major arrangement = Base + (j *

m) + I

In general, for column-major arrangement; address of the
element of the jth row and the jth column therefore is
 Addr (A[i][j] = ((j – LB2) * (UB1 – LB1 + 1) * size) + ((i –LB1) * size)

PROF. ANAND GHARU 50

Example 2.1: Consider an integer array, int A[3][4] in C++. If
the base address is 1050, find the address of the element A[2]
[3] with row-major and column-major representation of the
array.

For C++, lower bound of index is 0 and we have m=3, n=4,
and Base= 1050. Let us compute address of element A [2][3]
using the address computation formula

1. Row-Major Representation:

Address of A [2][3] = Base + (i * n) + j

= 1050 + (2 * 4) + 3

= 1061

PROF. ANAND GHARU 51

1 2 3 4 5 6 7 8 9 10 11 12

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)
Row1 Row2 Row3

Row-Major Representation of 2-D
array

PROF. ANAND GHARU 52

2. Column-Major Representation:

Address of A [2][3] = Base + (j * m) + i

= 1050 + (3 * 3) + 2

= 1050 + 11

= 1061

 Here the address of the element is same because it is the
last member of last row and last column.

PROF. ANAND GHARU 53

1 2 3 4 5 6 7 8 9 10 11 12

(0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2) (0,3) (1,3) (2,3)

Col 1 Col 2 Col 3 Col 4

Column-Major Representation of 2-D
array

PROF. ANAND GHARU 54

Characteristics of array
An array is a finite ordered collection of homogeneous data

elements.

In array, successive elements of list are stored at a fixed

distance apart.

Array is defined as set of pairs-(index and value).

Array allows random access to any element

In array, insertion and deletion of element in

between positions

• requires data movement.

Array provides static allocation, which means space

allocation done once during compile time, can not be

changed run time.
55 PROF. ANAND GHARU 55

Advantage of Array Data Structure
Arrays permit efficient random access in constant time 0(1).

Arrays are most appropriate for storing a fixed amount of data

and also for high frequency of data retrievals as data can be

accessed directly.

Wherever there is a direct mapping between the elements and

there positions, arrays are the most suitable data structures.

Ordered lists such as polynomials are most efficiently

handled using arrays.

Arrays are useful to form the basis for several more complex

data structures, such as heaps, and hash tables and can be

used to represent strings, stacks and queues.
56 PROF. ANAND GHARU 56

Disadvantage of Array Data
Structure

Arrays provide static memory management. Hence during

execution the size can neither be grown nor shrunk.

Array is inefficient when often data is to inserted or deleted

as inserting and deleting an element in array needs a lot of

data movement.

Hence array is inefficient for the applications, which very

often need insert and delete operations in between.

57 PROF. ANAND GHARU 57

Applications of Arrays
Although useful in their own right, arrays also form the

basis for several more complex data structures, such as

heaps, hash tables and can be used to represent strings,

stacks and queues.

All these applications benefit from the compactness and

direct access benefits of arrays.

Two-dimensional data when represented as Matrix and

matrix operations.

58 PROF. ANAND GHARU 58

CONCEPT OF ORDERED LIST
Ordered list is the most common and frequently used data

object

Linear elements of an ordered list are related with each
other in a particular order or sequence

Following are some examples of the ordered list.

 1, 3,5,7,9,11,13,15

 January, February, March, April, May, June, July,

August, September,

 October, November, December

 Red, Blue, Green, Black, Yellow

PROF. ANAND GHARU 59

There are many basic operations that can be
performed on the ordered list as follows:

 Finding the length of the list

 Traverse the list from left to right or from
right to left

 Access the ith element in the list

the ith  Update (Overwrite) the value of
position

 Insert an element at the ith location

 Delete an element at the ith position

PROF. ANAND GHARU 60

SINGLE VARIABLE POLYNOMIAL

PROF. ANAND GHARU 61

Single Variable Polynomial

 Representation Using Arrays

 Array of Structures

 Polynomial Evaluation

 Polynomial Addition

 Multiplication of Two Polynomials

PROF. ANAND GHARU 62

Polynomial Representation
on array

PROF. ANAND GHARU 63

Polynomial Representaiton

PROF. ANAND GHARU 64

Polynomial as an ADT, the basic operations are as
follows:

Creation of a polynomial

Addition of two polynomials

Subtraction of two polynomials

Multiplication of two polynomials

Polynomial evaluation

PROF. ANAND GHARU 65

Polynomial by using Array

PROF. ANAND GHARU 66

Polynomial by using Array

PROF. ANAND GHARU 67

 Structure is better than array for Polynomial:

 Such representation by an array is both time and space efficient when

polynomial is not a sparse one such as polynomial P(x) of degree 3 where
P(x)= 3x3+x2–2x+5.

 But when polynomial is sparse such as in worst case a polynomial as
A(x)= x99 + 78 for degree of n =100, then only two locations out of 101
would be used.

 In such cases it is better to store polynomial as pairs of coefficient and
exponent. We may go for two different arrays for each or a structure
having two members as two arrays for each of coeff. and Exp or an array
of structure that consists of two data members coefficient and exponent.

PROF. ANAND GHARU 68

Polynomial by using
structure

Let us go for structure having two data members
coefficient and exponent and its array.

PROF. ANAND GHARU 69

SPARSE MATRIX
In many situations, matrix size is very large but out of it, most of
the elements are zeros (not necessarily always zeros).

And only a small fraction of the matrix is actually used. A matrix of
such type is called a sparse matrix,

PROF. ANAND GHARU 70

SPARSE MATRIX

PROF. ANAND GHARU 71

Sparse Logical Matrix

PROF. ANAND GHARU 72

Sparse matrix and its representation

PROF. ANAND GHARU 73

Transpose Of Sparse Matrix

Simple Transpose

Fast Transpose

PROF. ANAND GHARU 74

Transpose Of Sparse Matrix

PROF. ANAND GHARU 75

Transpose Of Sparse Matrix

PROF. ANAND GHARU 76

Time complexity of manual technique is O (mn).

PROF. ANAND GHARU 77

Sparse matrix transpose

PROF. ANAND GHARU 78

Time complexity will be O (n . T)

= O (n . mn)

= O (mn2)

which is worst than the conventional transpose with time
complexity O (mn)

Simple Sparse matrix transpose

PROF. ANAND GHARU 79

Fast Sparse matrix transpose

In worst case, i.e. T= m × n (non-zero elements) the magnitude
becomes O (n +mn) = O (mn) which is the same as 2-D
transpose

However the constant factor associated with fast transpose is
quite high

When T is sufficiently small, compared to its maximum of m .
n, fast transpose will work faster

PROF. ANAND GHARU 80

It is usually formed from the character set of the
programming language

The value n is the length of the character string S where n ³

0

 If n = 0 then S is called a null string or empty string

String Manipulation
Using Array

PROF. ANAND GHARU 81

Basically a string is stored as a sequence of characters in

one- dimensional character array say A.

char A[10] ="STRING" ;

Each string is terminated by a special character that is null

character ‘\0’.

This null character indicates the end or termination of each

string.

82 PROF. ANAND GHARU 82

There are various operations that can be
performed on the string:

To find the length of a string

To concatenate two strings

To copy a string

To reverse a string

String compare

Palindrome check

To recognize a sub string.

83 PROF. ANAND GHARU 83

PROF. ANAND GHARU 84

Write a program to reverse string .

#include<iostream>

#include<string.h>

using namespace std;

int main ()

{

 char str[50], temp;

 int i, j;

 cout << "Enter a string : ";

 Cin>>str;

 j = strlen(str) - 1;

 for (i = 0; i < j; i++,j--)

 {

 temp = str[i];

 str[i] = str[j];

 str[j] = temp;

 }

 cout << "\nReverse string : " << str;

 return 0;

}

PROF. ANAND GHARU 85

/* C++ Program - Concatenate String using

inbuilt function */
#include<iostream.h>

#include<string.h>

void main()

{

clrscr();

char str1[50], str2[50];

cout<<"Enter first string : ";

Cin>>str1;

cout<<"Enter second string : ";

 cin>>str2;

strcat(str1, str2);

cout<<"String after concatenation is "<<str1;

getch();

}

PROF. ANAND GHARU 86

/* C++ Program - Concatenate String without using inbuilt function */

#include <iostream>

using namespace std;

int main()

 {

 char str1[100] = "Hi...";

char str2[100] = "How are you";

int i,j;

cout<<"String 1: "<<str1<<endl;

cout<<"String 2: "<<str2<<endl;

for(i = 0; str1[i] != '\0'; ++i);

j=0;

while(str2[j] != '\0')

{

str1[i] = str2[j];

i++; j++;

 }

str1[i] = '\0';

cout<<"String after concatenation: "<<str1;

return 0;

}

PROF. ANAND GHARU 87

To get the length of a C-string

string, strlen() function is used.

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char str[] = "C++ Programming is

awesome";

// you can also use str.length()

cout << "String Length = " <<

strlen(str);

return 0;

}

Find length of string without using strlen

function

#include<iostream>

using namespace std;

int main()

{

char str[] = "Apple";

int count = 0;

while (str[count] != '\0')

count++;

cout<<"The string is "<<str<<endl; cout

<<"The length of the string is

"<<count<<endl;

return 0;

}

PROF. ANAND GHARU 88

/* C++ Program - Compare Two String */

#include<iostream.h>

#include<string.h>

void main()

 {

 clrscr();

char str1[100], str2[100];

cout<<"Enter first string : ";

gets(str1);

cout<<"Enter second string : ";

gets(str2);

if(strcmp(str1, str2)==0)

{

cout<<"Both the strings are equal";

 }

else

{ cout<<"Both the strings are not equal";

 } getch(); }

PROF. ANAND GHARU 89

#include <iostream>

#include <string.h>

using namespace std;

int main()

{

char str1[20], str2[20];

int i, j, len = 0, flag = 0;

cout << "Enter the string : ";

gets(str1);

len = strlen(str1) - 1;

for (i = len, j = 0; i >= 0 ; i--, j++)

str2[j] = str1[i];

if (strcmp(str1, str2))

flag = 1;

if (flag == 1)

cout << str1 << " is not a palindrome";

else

cout << str1 << " is a palindrome";

return 0;

}

String is palindrom or not

PROF. ANAND GHARU 90

SIMPLE TRANSPOSE OF MATRIX IN C++

#include <iostream>

using namespace std;

int main()

{

int a[10][10], trans[10][10], r, c, i, j;

cout << "Enter rows and columns of matrix: ";

cin >> r >> c;// Storing element of matrix

cout << endl << "Enter elements of matrix: " <<

endl;

for(i = 0; i < r; ++i)

for(j = 0; j < c; ++j)

{

cout << "Enter elements a" << i + 1 << j + 1 << ":

";

cin >> a[i][j];

} // Displaying the matrix a[][]

cout << endl << "Entered Matrix: " << endl;

for(i = 0; i < r; ++i)

for(j = 0; j < c; ++j)

{ cout << " " << a[i][j];

if(j == c - 1)

cout << endl << endl; }

// Finding transpose of matrix a[][] and storing it

infor(i = 0; i < r; ++i)

for(j = 0; j < c; ++j)

{

trans[j][i]=a[i][j];

}

// Displaying the transpose

cout << endl << "Transpose of Matrix: " << endl;

for(i = 0; i < c; ++i)

for(j = 0; j < r; ++j)

{

cout << " " << trans[i][j];

if(j == r - 1)

cout << endl << endl;

}

return 0; }

PROF. ANAND GHARU 91

MULTIPLICATION OF TWO

POLYNOMIAL

#include<math.h>

#include<stdio.h>

#include<conio.h>

#define MAX 17

void init(int p[]);

void read(int p[]);

void print(int p[]);

void add(int p1[],int p2[],int p3[]);

void multiply(int p1[],int p2[],int p3[]);

/*Polynomial is stored in an array, p[i] gives coefficient

of x^i .

 a polynomial 3x^2 + 12x^4 will be represented as

(0,0,3,0,12,0,0,….)

*/

void main()

{

int p1[MAX],p2[MAX],p3[MAX];

int option;

do

{

printf(“nn1 : create 1’st polynomial”);

printf(“n2 : create 2’nd polynomial”);

printf(“n3 : Add polynomials”);

printf(“n4 : Multiply polynomials”);

printf(“n5 : Quit”);

printf(“nEnter your choice :”);

scanf(“%d”,&option);

switch(option)

{

case 1:read(p1);break;

case 2:read(p2);break;

case 3:add(p1,p2,p3);

 printf(“n1’st polynomial -> “);

 print(p1);

 printf(“n2’nd polynomial -> “);

 print(p2);

 printf(“n Sum = “);

 print(p3);

 break;

case 4:multiply(p1,p2,p3);

 printf(“n1’st polynomial -> “);

 print(p1);

 printf(“n2’nd polynomial -> “);

 print(p2);

 printf(“n Product = “);

 print(p3);

 break;

}

}while(option!=5);

}

PROF. ANAND GHARU 92

MULTIPLICATION OF TWO

POLYNOMIAL

void read(int p[])

{

int n, i, power,coeff;

init(p);

printf(“n Enter number of terms :”);

scanf(“%d”,&n);

/* read n terms */

for (i=0;i<n;i++)

{ printf(“nenter a term(power coeff.)”);

scanf(“%d%d”,&power,&coeff);

p[power]=coeff;

}

}

void print(int p[])

{

int i;

for(i=0;i<MAX;i++)

if(p[i]!=0)

printf(“%dX^%d “,p[i],i);

}

void add(int p1[], int p2[], int p3[])

{

 int i;

 for(i=0;i<MAX;i++)

p3[i]=p1[i]+p2[i];

}

void multiply(int p1[], int p2[], int p3[])

{

int i,j;

init(p3);

for(i=0;i<MAX;i++)

for(j=0;j<MAX;j++)

 p3[i+j]=p3[i+j]+p1[i]*p2[j];

}

void init(int p[])

{

 int i;

 for(i=0;i<MAX;i++)

p[i]=0;

}

*******END******

PROF. ANAND GHARU 93

FIND SIMPLE TRANSPOSE OF

MATRIX

#include <iostream>

using namespace std;

int main()

{

 int a[10][10], trans[10][10], r, c, i, j;

 cout << "Enter rows and columns of matrix: ";

 cin >> r >> c;

//Storing element of matrix enter by user in array a[][].

 cout << endl << "Enter elements of matrix: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << "Enter elements a" << i + 1 << j + 1 << ":

";

 cin >> a[i][j];

 }

// Displaying the matrix a[][]

 cout << endl << "Entered Matrix: " << endl;

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 cout << " " << a[i][j];

 if(j == c - 1)

 cout << endl << endl;

 }

 // Finding transpose of matrix a[][] and storing it

in array trans[][].

 for(i = 0; i < r; ++i)

 for(j = 0; j < c; ++j)

 {

 trans[j][i]=a[i][j];

 }

PROF. ANAND GHARU 94

FIND SIMPLE TRANSPOSE OF

MATRIX

// Displaying the transpose,i.e, Displaying array

trans[][].

 cout << endl << "Transpose of Matrix: " <<

endl;

 for(i = 0; i < c; ++i)

 for(j = 0; j < r; ++j)

 {

 cout << " " << trans[i][j];

 if(j == r - 1)

 cout << endl << endl;

 }

 return 0;

}

95

THANK YOU !!!!!

Blog : anandgharu.wordpress.com

gharu.anand@gmail.com

PROF. ANAND GHARU 95

