Pune Vidyarthi Griha’s

AT
e

-

) s IR S R R A
B

=

COLEGE OF ENGINEERING, NASHIK - 3.

-

“Linear Data Structure using
Squential Organization”

By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

10 July 2019

SEQUENTIAL ORGANIZATION

» Definition :
‘In computer science, sequential access means that a
group of elements (such as data in a memory array or a disk file or

on magnetic tape data storage) Is accessed Iin a predetermined,
ordered segquence.Seguential access Is sometimes the only way of

accessing the data, for example if it is on a tape.”

Sequential access
.j}/\/\/\/\]/\//\{/\{/

e | & Ve Ve M

1 2 3 4q 5 o6 7/ 38

Random access

: "/__34/ ,'/&f/f
. 1 3 7 2 8 /|6 e 5 P

PROF. ANAND GHARU

Linear Data Structure Using
Sequential Organization

* Definition :
“The data structure where data items are organized

sequentially or linearly one after another Is called as

Linear Data Structure”

A linear data structuretraverses the data elements

sequentially, in which only one data element can directly

be reached. Ex: Arrays, Linked Llists.

®3
PROF. ANAND GHARU

Array

» Definition :
“An array is a finite ordered collection of homogeneous
data elements which provides direct access (or random
access) to any of its elements.
An array as a data structure is defined as a set of pairs
(index,value) such that with each index a value is
associated.
 index — indicates the location of an element in an

array.

* value - indicates the actual value of that data element.

Declaration of an array in ‘C++"
* int Array_A|[20];

29

o 04
PROF. ANAND GHARU

Array

» Array Representation

* Arrays can be declared in various ways In different languages.
For illustration, let's take C array declaration.

= ETwwzdexx — Each location of amn elerment im an array has a mnumerical
iNmnde>=, which i=s used to iIdentifty thhe elaerment.

Array Representation

Aarrays can be declared imn warious waws in differemnt languages. For illustration,
lert's take C array declaration.

iNnt array [10] = { 35, 33, 42, 10, 14, 19, 27, 44, 26, 31 }

Aarrays canmn be declared im wvarious waws in differemnt lanmnguages. For illustration,
let's take O array declaration.

=lerments =5 = B g = 1O 1 =3 19 =& == =5 =1

iNndcdex O 1 = =3 < = = rd 8 =

Size= - 10

* Arrays can be declared in various ways In different languages. For
Illustration, let's take C array declaration.

* As per the above illustration, following are the important points to be

considered.

o ®5
PROF. ANAND GHARU

Array

* Array Representation
* [ndex starts with O.
» Array length is 10 which means it can store 10 elements.

» Each element can be accessed via its index. For example, we
can fetch an element at index 6 as 9.

» Basic Operations

* Following are the basic operations supported by an array.
* Traverse — print all the array elements one by one.

* Insertion — Adds an element at the given index.

» Deletion — Deletes an element at the given index.

» Search — Searches an element using the given index or by the
value.

» Update — Updates an element at the given index.

o ®6
PROF. ANAND GHARU

Memory Representation and Calculation
e

NMNermonry Repressaenmnitationm J

Memory arrangermment after declaring one dimensional
array shovwn in Fig. 2. 3_1 .

percentage [O 1}

SOo00O

percentage [1] SRR

percentage [=2] 008

percentage | 3 1 SO T2

percentage [4] 3016 Memonry
percentage | S 3} 020 o= ia e
percentage [& } 330243

percentage | 7 1 028

Prpercentage [8 1} I[JO3=

PpPercentage | & 1 O3S

Fig. 2.3_1

Initialize an array o store percentage of 1 0O students
poercentagefO] oSO _ O 7

percentagefl 1]

T . 473

percentagel 2] SO. 0

S percentagcel 3} 54 .04

percentagel4] S0 .60

PpercentagelS]

91 .70;:

SO _30:
8BS 27
< _TFO

TEEEER

-

-

ADDRESS CALCULATION

The address of the ith element is calculated by the
following formula

(Base address) + (offset of the ith element from base

address)

Here, base address is the address of the first element
where array storage starts.

Abstract Data Type

ADT is useful tool for specifying the logical properties of

a data type.

A data type Is a collection of values & the set of

operations on the values.

ADT refers to the mathematical concept that defines the

data type.

ADT Is not concerned with implementation but is useful

IN making use of data type.

ADT for an array

Arrays are stored In consecutive set of memory

locations.
Array can be thought of as set of index and values.

For each index which Is defined there Is a value

associlated with that index.

There are two operations permitted on array data

structure .retrieve and store

ADT for an array

CREATE()-produces empty array.
RETRIVE(array,index)->value

Takes as input array and index and either returns

appropriate value or an error.

STORE(array,index,value)-array used to enter new index

value pairs.

Introduction to arrays

Representation and analysis
Type variable _name|size]

Operations with arrays:
Copy

Delete

Insert

Search

Sort

Merging of sorting arrays.

Copy operation

#include <stdio.h>
int main()
{
int a[100],b[100] position, ¢ n;

printf("Enter number of elements in array\n");
scanf("%d", &n);

printf("Enter %d elements\n“, n);

for(c=0;c<n;c++)
scanf("%d", &a[c]);

printf("Enter %d elements\n", n);

forf(c=0;c<n-1;c++)
printf("%d\n", a[c]);

//Coping the element of array ato b

for(c=0;c<n-1;c++)

{
b[c]=alc];

Output

Enter number of elements in array -4

Enter 4 elements

w N

displaying array a

iIsplaying array b

A OWODNPFPOOP,WDNEPE

Delete operation

#include <stdio.h>

int main()

{

int array[100], position, i, n;

printf("Enter number of elements in array\n");
scanf("%d", &n);

printf(" Enter %d elements\n", n);

for (i=0;i<n;i++)

scanf("%d", &arrayl[i]);

printf("Enter the location where you wish to delete element\n");
scanf("%d", &position);

for (i =position;i<n;i++)
o {

array[i] = array[i+1];

}

printf("Resultant array is\n");
for(i=0;i<n-1 ;i++)

printf("%d\n", array[i]);
@®return O;

}

Delete operation

E\programmingsimplified.com\c\delete-array.exe

Enter number ot elements 1n array
5 y
Enter 5 elements

4
6

EIJ_|:|

Enter the location where you wish to delete element
-

R
i
1

(=]

sultant array 1s

5

4 1

Inserting an element

#include <stdio.h>
int main()
{

int array[100], position, i, n, value;

printf("Enter number of elements in array\n");
scanf("%d", &n);

printf("Enter %d elements\n”, n);

for (i= Oji< n; i++)
scanf("%d", &arrayl[i]);

printf("Enter the location where you wish to insert an element\n");
scanf("%d", &position);

printf("Enter the value to insert\n");
scanf("%d", &value);

for (i=n-1;i>=position ; i--)
array[i+1] = array[i];

array[position] = value;
printf("Resultant array is\n");
for (I=0; i <=n; i++)

printf("%d\n", array[i]);
return O;

Inserting an element

E\programmingsimplified.com\c\insert-array.exe

Enter number of elements 1n array
5
Enter 5 elements

Enter the location where you wish to insert an element
4

Enter the value to insert

10

Resultant array 1s

Sort an array

Int a[10]={5,4,3,2,1}

for(i=0;i<n-1;i++)

{
for(j=0;)]<=n-1;]++)
{

f(al]>alj+1])
{
temp=alll;
all]=all];
a[j]=temp;
}

Reverse array

#include <stdio.h>

Int main() {
int array[100], n, i, temp, end,;

scanf("%d", &n);
end =n -1,

for (i =0;i<n;i++){
scanf("%d", &array[i]);
}

for (i= 0; <n/2; i++)

{
temp = array|i];
array[i] = array[end];
array[end] = temp;

end--;

}

printf("Reversed array elements are:\n");

for (i=0;i<n;i++){
printf("%d\n", array[i]);
}

geturn 0;

Sort element using array
int a[|10]={5,4,3,2,1}
for(iI=0;I<n;i++)
for(J=1+1;]<n;}++)
{
if(ali]>alj])
{
temp=ali];
all]=al)];
alJ]=temp;

}

Two-dimensional Arrays
in C

 multidimensional array is the two-dimensional
array

* type arrayName [x][y |;

Two-dimensional Arrays
in C

Column 0 Column 1 Column 2 Column 3

Row 2 af2][0] al2][1] al[2][2] a[2][3]

M-No Of rows
Nn-no of columns
Printf("\n Enter the rows and columns®);
Scanf(%d %d”,&m,&n);
for(i=0;I<m;++)
{
for(J=0;j<n;j++)

{
Printf(\n Enter the value of(%d)(%d)=",1,));

Scanf(“%d”,&al[il[jl):
]
]

for(1=0;I1<m;I++)
{
Printf("\n");
for(J=0;J]<n;j++)
{
printf(“%d”,&alil[j]);
]
]

ARRAY AS AN ADT

Formally ADT is a collection of domain, operations,and

axioms (or rules)

For defining an array as an ADT, we have to define its very

basic operations or functions that can be performed on it

The basic operations of arrays are creation of an array,
storing an element, accessing an element, and traversing

the array

® PROF. ANAND GHARU ®26

List of operation on Array :-

1. Inserting an element into an array
2. deleting element from array
3. searching an element from array

4. sorting the array element

® PROF. ANAND GHARU ®27

N -dimensional Arrays

1D (One Dimension):

Let 2[m,] be a one-dimensional array. Let 2[0] be stored at address Base= ¥ Now
assuming one element per location, the address of 2[1] 18 ¥+1, address of an

arbitrary element A[1] 18 eiven by ¥ + 1, and the address of 2[m;-1] 18 ¥+ m.-1.

AT | AN | AR | AR | e Almy 1]

X X1 | X2 | . X | e X+ (mg-1)

® PROF. ANAND GHARU ®28

2D(Two Dimension):

Now consider two-dimensional array 2Z[m.] [m.] which has m, rows as

row., Iow. — - — — row m.-1and each row contains m. elements as there are m.

columns.

® PROF. ANAND GHARU @29

Now let 2[0] [0] be stored at address ¥ then 2[0] [1] would be stored at ¥+1;
R[0]1[1] would beat X+iandsoontalll 2[0] [m.-1] at ¥ + (m,-1). Now address of

A[1] [0] wpldbesr—t—m+—Addressof B+

bk elemen[ts
| b e e —— o

:rnwi L. Thw Im 1
| |
|
|

row (: row 1

44— (1 *my) elements ——m

Row-Major representation of 2D array

® PROF. ANAND GHARU ® 30

Allf[mzf[m3] — — Ali/[m2][m3] — A[mi-1][m2]

Alo][m2][m3]

Three dimensions row-majorarrangement

® PROF. ANAND GHARU o3l

The address of A[i][j][k] is computedas

Addrof Ali][jl[k]=X+i*m2*m3+j *m3+k

By generalizing this we get the address of Ali1][iz][i3] ... [in] in n-
dimensional array A{mi][mz2][m3]. ...[mn]

Consider the address of A [o][o][0].....[0] is X then the address of A
[i/[o][o]....[o] =X + (i1 *m2 *m3 *- - --- *mn)and

Address of A [i1][i2] [o] =X+ (i1 *m2 *m3 *-—--"mn) + (i2 *
m3 *m4 *--- *mn)

Continuing in a similar way, address of A[i1][i2][i3]- - - -[in] willbe

Address of Aluif[i2][i3]----[in] =X+ (i1 *m2 *m3 *-----*mn) +
(iz *m3 *my4 *--- - - *mn)+(i3 * m4 * m5--- *mn + (i * m5 * m6--
---fmnAa..+in o= & ; .

® PROF. ANAND GHARU ® 32

Ex-Arrays

#include <stdio.h>
Int main ()

{

int a[10],1,size;
printf(“\nhow many no of elements u want to scan”);
scanf(“%d”,&size);
printf(“\nEnter the elements in the array”);

for(i=0;i<size;i++)
{
scanf(“%d”,&al[i]);

} /lend for

for(i=0;i<size;i++)
{
printf(“The array is %d”,a[i]); //Displaying Array

} /lend for

o
return O;

o B W DN B

Output will be

Multi-dimensional Arrays
in C

* type name|sizel][size?2]...[sizeN]

Two-dimensional Arrays
in C
* multidimensional array Is the two-dimensional array

 type arrayName [x]| v |,

Two-dimensional Arrays
in C
Column 0 Column 1 Column 2 Column 3

Row 2 a[2][0] a[2][1] | a[2][2]) a[2][3]

HOW TO INITIALIZE 2-D
ARRAY IN PROGRAM

* Initializing Two-Dimensional Arrays

Int a[3][4] ={ {0, 1, 2, 3}, /* initializers for
{4,5,6, 7},
{8, 9, 10, 11} /* initializers for row
/[* Initializers for row indexed by 2 */ };

* Accessing Two-Dimensional Array Elements

int val = a[2][3];

Three-dimensional
Arrays in C

* For example, the following declaration creates a three
dimensional integer array —

« Ex-int threedim[5][10][4];

THE CLASS ARRAY

Arrays support various operations such as
traversal, sorting, searching, insertion,
deletion, merging, block movement, etc.

Insertion of an element into an array

Deleting an element

Memory Representation of Two-Dimensional Arrays

® PROF. ANAND GHARU 041

Row-major Representation
Column-major Representation

Columns

Coli colz.... coln

Rows Ri An A1z ... Ain I 7o S

R Ann A1z Ain Matrix M = 5 6 7 8

9 10 11 12

Ami Amz ... Amn "

® PROF. ANAND GHARU 042

w-major representation

Row-major representation

In row-major representation, the elements of Matrix are
stored row-wise, i.e., elements of 1st row, 2nd row, 3rd row,
and so on till mth row

1 2 3 4 5 6 7 8 9 10 1 12
(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

Row1 Row2 Row3

® PROF. ANAND GHARU @ 44

Row major
arrangement

Row m-1

Row-major arrangement in memory , in row major representation
® PROF. ANAND GHARU ® 45

The address of the element of the ith row and the jth column for matrix of
size m x n can be calculated as:

Addr(Ali][j]) = Base Address+ Offset = Base Address + (number
of rows placed before ith row * size of row) * (Size of Element) +
(number of elements placed before in jth element in ith row)*

size of element

As row indexing starts from o, i indicate number of rows before the
ith row hereand similarly for j.

For Element Size =1 the address is
Address of Ali][j]= Base + (i *n) +j

PROF. ANAND GHARU 46

In general,

Addrli][j] = ((i-LB1) * (UB2 - LB2 + 1) *size) + ((j- LB2) * size)
where number of rows placed before ith row = (i - LB1)
where LB1 is the lower bound of the firstdimension.

Size of row = (number of elements in row) * (size of
element)Memory Locations

The number of elements in arow = (UB2 - LB2 + 1)
where UB2 and LB2 are upper and lower bounds of the

second dimension.

® PROF. ANAND GHARU @47

Column-major representation

In column-major representation m x n elements of two- dimensional
array A are stored as one single row of columns.

The elements are stored in the memory as a sequence as first the

elements of column 1, then elements of column 2 and so on till elements
of column n

® PROF. ANAND GHARU ®48

Column-major arrangement

 __
colz
-]

Column-major arrangement in memory , in column major representation
® PROF. ANAND GHARU ® 49

Memory Location

The address of Ali][j] is computedas

Addr(Ali][j]) = Base Address+ Offset= Base Address + (number of

columns placed before jth column * size of column) * (Size of
Element) + (number of elements placed before in ith element in ith
row)* size of element

For Element Size =1 the addressis

Address of Ali][j] for column major arrangement = Base + (j *
m)+1

In general, for column-major arrangement; address of the
element of the jth row and the jth column therefore is
Addr (Ali][j] = (G - LB2) * (UB1 - LB1 + 1) *size) + ((i -LB1) * size)

PROF. ANAND GHARU 50

Example 2.1: Consider an integer array, int A[3/[4] inC++. If
the base address is 1050, find the address of the element A[2]
[3] with row-major and column-major representation of the
array.

For C++, lower bound of index is o and we have m=3, n=4,
and Base= 1050. Let us compute address of element A [2][3]
using the address computation formula

1. Row-Major Representation:
Address of A [2][3] = Base + (i *n) +j

=1050 + (2 ¥ 4) + 3
= 1061

PROF. ANAND GHARU

51

1 2 3 4 5 6 7 8 o9 10 1u 12
(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

Row1 Row2 Row3

Row-Major Representation of 2-D
array

® PROF. ANAND GHARU ®52

. Column-Major Representation:
Address of A [2][3] = Base + (j *m) +i

=1050+ (3 *3) + 2
= 1050 + II

= 1061

Here the address of the element is same because it is the
last member of last row and last column.

® PROF. ANAND GHARU ®53

1 2 3 4 5 6 8 9 10 1 12
(0,0) (1,0) (2,0) (0,1) (1,1) (2,2) (0,2) (1,2) (2,2) (0,3) (1,3) (2,3)

Col 1 Col 2 Col 3 Col 4

Column-Major Representation of 2-D

® PROF. ANAND GHARU ® 54

Characteristics of array

An array Is a finite ordered collection of homogeneous data
elements.

In array, successive elements of list are stored at a fixed
distance apart.

Array Is defined as set of pairs-(index and value).
Array allows random access to any element

Inarray, insertion and deletion of element In
between positions
requires data movement.

Array provides static allocation, which means space
allocation done once during compile time, can not be
changed run time.

® PROF. ANAND GHARU ®55

Advantage of Array Data Structure

Arrays permit efficient random access in constant time o(1).

Arrays are most appropriate for storing a fixed amount of data
and also for high frequency of data retrievals as data can be

accessed directly.

Wherever there is a direct mapping between the elements and

there positions, arrays are the most suitable data structures.

Ordered lists such as polynomials are most efficiently

handled using arrays.

Arrays are useful to form the basis for several more complex
data structures, such as heaps, and hash tables and can be

used to represent strings, stacks and queues.
® PROF. ANAND GHARU ® 56

Disadvantage of Array Data
Structure

Arrays provide static memory management. Hence during

execution the size can neither be grown nor shrunk.

Array is inefficient when often data is to inserted or deleted
as inserting and deleting an element in array needs a lot of

data movement.

Hence array is inefficient for the applications, which very

often need insert and delete operations in between.

® PROF. ANAND GHARU o5/

Applications of Arrays

Although useful in their own right, arrays also form the
basis for several more complex data structures, such as
heaps, hash tables and can be used to represent strings,

stacks and queues.

All these applications benefit from the compactness and

direct access benefits of arrays.

Two-dimensional data when represented as Matrix and

matrix operations.

® PROF. ANAND GHARU

@58

CONCEPT OF ORDERED LIST

Ordered list is the most common and frequently used data

object
Linear elements of an ordered list are related with each
other in a particular order or sequence

Following are some examples of theordered list.

L 3,5,7,9,11,13,15
January, February, March, April, May, June, July,

August, September,
October, November, December

Red, Blue, Green, Black, Yellow

® PROF. ANAND GHARU ®59

There are many basic operations that can be
performed on the ordered list as follows:

Finding the length of the list

Traverse the list from left to right or from
right to left

Access the ith element in thelist

Update (Overwrite) the value of the ith
position

Insert an element at the ith location

Delete an element at the ith position

PROF. ANAND GHARU

60

SINGLE VARIABLE POLYNOMIAL

A polynomial of a eingle variable 2 (%) can be written as

OG- T G T G a.%x + a, wherea, # (and
degres.of B (%) d8 Mhro o

Single Variable Polynomial

Representation Using Arrays

<+ Array of Structures
Polynomial Evaluation

<+ Polynomial Addition
Multiplication of Two Polynomials

® PROF. ANAND GHARU ®62

Polynomial Representation
on arra

Polynomial Representaiton

Polynomial as an AD'T, the basic operations are as

follows:

“*» Creation of a polynomial
Addition of two polynomials

“+» Subtraction of two polynomials
Multiplication of two polynomials

» Polynomial evaluation

® PROF. ANAND GHARU ® 65

Polynomial by using Array

POLYHOMIAL of degree 3 P (x) = I+ —22x+5

INDEX
1 0

POLYHOMIAL of degree B8 P (x) = L1553+ x®+2Z2xY —3x+ x +10

IMDIE X
i o 2

11

® PROF. ANAND GHARU ®66

Polynomial by using Array

POLYNOMIAL of degree 99 P (x)

INDEX
1

® PROF. ANAND GHARU

®6/

% Structure is better than array for Polynomial:

Such representation by an array is both time and space efficient when
polynomial is not a sparse one such as polynomial P(x) of degree 3 where
P(x)= 3x3+x2-2X+5.

But when polynomial is sparse such as in worst case a polynomial as

A(x)= x99 + 78 for degree of n =100, then only two locations out of 101
would be used.

In such cases it is better to store polynomial as pairs of coefficient and
exponent. We may go for two different arrays for each or a structure
having two members as two arrays for each of coeff. and Exp or an array
of structure that consists of two data members coefficient and exponent

® PROF. ANAND GHARU @63

Polynomial by using
structure

Let us go for structure having two data members
coefficient and exponent and itsarray.

POLYNOMIAL of degree 99 P (x) = 3x*+x"—Z2x+5

INDEX

COEF

EXPO

® PROF. ANAND GHARU @69

SPARSE MATRIX

In many situations, matrix size is very large but out of it, most of
the elements are zeros (not necessarily always zeros).

And only a small fraction of the matrix is actually used. A matrix of
such type is called a sparse matrix,

-~ Value : Value of the non zero element located at
index - (row, column)

Fig. 2.9.1 : Sparse Matrix

Let us take an example of a logical matrix LA and LB as follows:

N /0

1
1
0
1
1
1
0

Sparse Logical Matrix

® PROF. ANAND GHARU ®/2

Alternate
Representation of
Sparse Matnx A=

7 S
Rows= Colimmnns NonZZero
Entries

"
[

bJ
IJ

)

1

: S

. =

3 1 3
- 3 5
—+ - -
5 2 Z
3

‘A
Y

Sparse matrix and its representation

® PROF. ANAND GHARU ®/3

Transpose Of Sparse Matrix

Simple Transpose

Fast Transpose

® PROF. ANAND GHARU ®/4

Transpose Of Sparse Matrix

(AT AN WY VI MA WA RIATY
— To transpose a matrix, we must interchange the rows ' - , o ‘

and columns. This means that if an element is at
position [j][k] in the original martrix, then it is at sz
position [k][j] in the transposed matrix.

— When k = j, the elements on the diagonal will remain M
MM
= A] - ol . W’W‘
unchanged. Since the original matrix is organized by
rows, our first idea for a transpose algorithm might be Index | Row Column v alue

the fQﬂOWil’lg: M——ﬁ-—q
for (each row k)

take element (k.j, value) and 0 4 3 4
store it in (j,k. value) of the transpose; b—__——-_-?——-_-—-ﬁ—_"—
For example] 0 l 5

Fig, 29.2(b) : Transpose Matrix

%
o =1
S
i)
S
D)
7))
qv)
Jp
e
o
D)
7))
-
7))
-
=
-

® PROF. ANAND GHARU

Time complexity of manual technique is O (mn).

® PROF. ANAND GHARU ®//

arse matrix transpose

x4

Sparse Matrix and its Transpose

o\

h o e

o Lh

/

® PROF. ANAND GHARU ®/8

Simple Sparse matrixtranspose

Time complexity will be O (n. T)
=0 (n.mn)
= 0 (mn?)

which is worst than the conventional transpose with time
complexity O (mn)

® PROF. ANAND GHARU ®7/9

Fast Sparse matrix transpose

In worst case, i.e. T= m X n (non-zero elements) the magnitude
becomes O (n +mn) = O (mn) which is the same as 2-D
transpose

However the constant factor associated with fast transpose is
quite high

When T is sufficiently small, compared to its maximum of m.
n, fast transpose will work faster

® PROF. ANAND GHARU ® 30

String Manipulation
Using Array

It is usually formed from the character set of the
programming language

The value n is the length of the character string S where n~
0

If n = o then S is called a null string or empty string

® PROF. ANAND GHARU e31

Basically a string Is stored as a sequence of characters In
one- dimensional character array say A.

char A[10] ="STRING" ;

Each string Is terminated by a special character that is null
character \0’

This null character indicates the end or termination of each
string. :

® PROF. ANAND GHARU ® 32

There are various operations that can be
performed on the string:

To find the length of a string
To concatenate two strings
To copy astring

Toreverse a string

String compare

Palindrome check

To recognize a sub string

® PROF. ANAND GHARU ® 383

Write a program to reverse string.

#include<iostream>

#include<string.h>

using namespace std;

Int main ()

{

char str[50], temp;

inti, j:

cout << "Enter a string : '";

Cin>>str;
J = strlen(str) - 1;
for (I=0;i<]; i++,j--)
{
temp = stri];
stri] = str[j];
str[j] = temp;
}

cout << ""\nReverse string

Feturn Q0 ANAND GHARU

- " << str;

® 34

[* C++ Program - Concatenate String using

Inbullt function */
#include<iostream.h>
#include<string.h>

void main()

{

clrscr();

char str1[50], str2[50];

cout<<"Enter first string : ";

Cin>>strl;

cout<<"Enter second string : ";

cin>>str2;

strcat(strl, str2);

cout<<"String after concatenation Is "<<str1,;

getch();
! ®85

[* C++ Program - Concatenate String without using inbuilt function */

#include <iostream>

using namespace std;

Int main()

{

char str1[100] = ""Hi..."";

char str2[100] = ""How are you"';
Inti,j;

cout<<"'String 1: ''<<strl<<endl;
cout<<"'String 2: ''<<str2<<endl;
for(1 = 0; strifi] '="\0"; ++1I);

J=0;

while(str2[j] '= "\0")
{

strifi] = str2[j];
I++; J++;

}

strifi] = "\0";

cout<<''String after concatenation
return O;

} ® PROF. ANAND GHARU

<<strl;

® 36

To get the length of a C-string Find length of string without using strlen

string, strlen() function is used. function

#include <iostream> #include<iostream>
#include <cstring> using namespace std;
using namespace std; int main()

Int main() {

{ char str[] = "Apple';
char str[] = "C++ Programming IS = int count = 0
awesome'’;

while (strfcount] '="\0")
// you can also use str.length()
_ count++;
cout << "'String Length ="' <<

strlen(str): cout<<"The string is "'<<str<<endl; cout

<<"The length of the string is

return O; ""<<count<<endl:
} return O:
}

® PROF. ANAND GHARU ®37/

[* C++ Program - Compare Two String */
#include<iostream.h>
#include<string.h>

void main()

{

clrscr();

char str1[100], str2[100];
cout<<"Enter first string : '";
gets(strl);

cout<<"Enter second string : "’;
gets(str2);

If(stremp(strl, str2)==0)

{

cout<<"'Both the strings are equal'’;
}

else

{ cout<<'"'Both the strings are not equal'’,
® PROF. ANAND GHARU ® 38

1 getch(): }

#include <iostream>

sinclude <sringh String Is palindrom or not

using namespace std;

Int main()

{

char str1[20], str2[20];

Inti, j, len =0, flag = 0;

cout << "Enter the string : '';
gets(strl);

len = strlen(strl) - 1;
for(i=len,j=0;i>=0;i--, J++)
str2[j] = stri[i];

If (strcmp(strl, str2))

flag = 1;

if (flag == 1)

cout << strl << " is not a palindrome'",;

else
cout << strl << is a palindrome"’;

return O;

} ® PROF. ANAND GHARU

® 39

SIMPLE TRANSPOSE OF MATRIX IN C++
#include <iostream>

using namespace std;

Int main()

{

int a[10][10], trans[10][10], r, c, I, J;

cout << "Enter rows and columns of matrix: **;
cin >> r >> ¢;// Storing element of matrix

cout << endl << "Enter elements of matrix: " <<
endl:

for(i=0;1<r; ++)
for(J =0; J <c; ++J)
{

cout << "Enterelementsa" <<i+1<<j+1<<™:

cin >> a[i][jl;

} /I Displaying the matrix a[][]

cout << end| << "Entered Matrix: " << endl,
for(i :ooF;IQIOT:.rAI_IFAFI\II%) GHARU

for(i =01 <cC: ++])

{ cout << " " << Q[i][j];
if(j == ¢ - 1)
cout << endl << endl; }

// Finding transpose of matrix a[][] and storing it
Infor(i = 0; 1 <r; ++i)

for(j =0;) <c; +4))

{

trans[j][i]=alil[j];

}

/[Displaying the transpose

cout << endl << "Transpose of Matrix: " << endl;
for(1=0; 1 <c; ++1)

for(J =0;) <r; +4))

{

cout << " "' << transli][j];

Ifg==r-1)

cout << endl << endl;

}

return 0; } ®30

MULTIPLICATION OF TWO
POLYNOMIAL

#include<math.h>

#include<stdio.h>

#include<conio.h>

#define MAX 17

void init(int p[]);

void read(int p[]D);

void print(int p[]);

void add(int p1[],int p2[],int p3[]);
void multiply(int p1[],int p2[],int p3[]);

[*Polynomial is stored in an array, p[i] gives coefficient
of X1 .

a polynomial 3x"2 + 12x”4 will be represented as
(0,0,3,0,12,0,0,....)
*/

void main()

{

int pL[MAX],p2[MAX],p3[MAX];

Int option;

do

{

printf(“nnl : create 1’st polynomial”);
printf(“n2 : create 2°’nd polynomial”);
printf(“n3 : Add polynomials”);
printf(“n4 : Multiply polynomials”);
printf(“nS : Quit”);

printf(“nEnter your choice :”);
® PROF. ANAND GHARU
scanf(“%d”,&option),

{

}
}

switch(option)

case 1l:read(pl);break;
case 2:read(p2);break;
case 3:add(pl,p2,p3);

printf(“n1’st polynomial -> «);
print(pl);

printf(“n2’nd polynomial -> *);
print(p2);

printf(“n Sum = ¢);

print(p3);

break;

case 4:multiply(p1,p2,p3);

printf(“n1’st polynomial -> *);
print(pl);

printf(“n2’nd polynomial -> *);
print(p2);

printf(““n Product = *);
print(p3);

break;

ywhile(option!=5);

91

MULTIPLICATION OF TWO
POLYNOMIAL

void read(int p[])
{

Int n, I, power,coeff;

INit(p);

printf(“n Enter number of terms :”);
scanf(“%d”,&n);

/[* read n terms */

for (i=0;i<n;i++)

{ printf(“nenter a term(power coeff.)”);
scanf(“%d%d”,&power,&coeff);
p[power]=coeff;

}
}
void print(int p[])
{
Int I1;
for(i=0;i<MAX;i++)
If(p[i]!=0)
printf(“%dX"%d “,p[il,i);
}
void add(int p1[], int p2[], int p3[])
{

Int I;

for(i=0;i<MAX;i++)
p3[i]=pERPFHP2NEND GHARU
1

void multiply(int p1[], int p2[], int p3[])
{
inti,j;
init(p3);
for(i=0;i<MAX;i++)
for(j=0;j<MAX;j++)
: p3[i+)]=p3[i+]]+pl[i]*p20]:
void init(int p[])
{

Int I;

for(i=0;i<MAX;i++)
§[i]=0:

kkkkkkk E N D******

® 92

FIND SIMPLE TRANSPOSE OF | /Displaying the matrix a[i]

MATRIX cout << endl << "Entered Matrix: " << endl;
: : for(i=0;1<r; ++i)
#include <iostream>
for(j =0; j<c; ++j
using namespace std; or(j=0;J<¢; ++J)
Int main() 1
{ cout << " " << a[i][jl;
If(iI==0c¢c -1
int a[10][10], trans[10][10], r, c, I, J; ItQ c-1)

cout << endl << endl;

cout << "Enter rows and columns of matrix: *; }

cin >>r >> c;

// Finding transpose of matrix a[][] and storing it
In array trans[][].
//Storing element of matrix enter by user in array a[][]. for(i=0: i <r; ++i)
cout << endl << "Enter elements of matrix: "' << endl; for(j = 0; j < c; ++j)

{
trans[][1]=ali]0];

for(i=0;1<r; ++i)
for(J =0; J <c; ++))
{

cout << "Enter elementsa" <<i+1l<<j+1<<':

cin >> a[i][j];

) ® PROF. ANAND GHARU ®93

FIND SIMPLE TRANSPOSE OF
MATRIX

/[Displaying the transpose,i.e, Displaying array
trans[][].

cout << endl << "Transpose of Matrix: " <<
endl;

for(i=0;1<c; ++1)

for(=0; J <r; ++))

{
cout << " "' << trans[i][j];
If(j ==r-1)
cout << endl << endl;
}
return O;

® PROF. ANAND GHARU ®94

THANK YOU

Blog : anandgharu.wordpress.com

gharu.anand@gmail.com

® PROF. ANAND GHARU ® 95

