
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“STACK”

By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

26 August 2019
.

CONCEPT OF STACKs

Definition :

“ Stack is data structure in ehich addition and

removal of an element is allowed at the same end is

called as top of stack.”

- Stack is also called as Last In First Out(LIFO)

list.

- It means element which get added at last will be

removed first.

e.g.

CONCEPT OF STACKs

Example :

Components of Stack

• Top is a variable which refers to

last position in stack.

• Element is component which has
data.

• MaxStack is variable that describes

maximum number of elements in a

stack.

Main Operation

STACK

POP

Take data from

element in

stack

PUSH

Add data to

element in

stack.

Kinds of Operation

• Stack Operation in array form

• Stack Operation in Linked list

form

STACK AS AN ADT

 Stack is an abstract data type which is defined

by the following structure and operation.

Stack operation :

1. createstack()

2. Push()

3. Pop()

4. Peek()

5. IsEmpty()

6. IsFull()

7. Size()

STACK AS AN ADT

Createstack - it create new empty stack.

push() − Pushing (storing) an element on the stack.

pop() − Removing an element from the stack.

peek() − get the top data element of the stack,

without removing it.

isFull() − check if stack is full.

isEmpty() − check if stack is empty.

Size() – return the number of item in the stack.

STACK AS AN ADT
1. Initializing stack :

STACK AS AN ADT
2. IsFull() stack :

 check stack is full or not?

STACK AS AN ADT
3. IsEmpty() stack :

 check stack is empty or not?

STACK AS AN ADT
4. Push() stack : add element in stack

STACK AS AN ADT
5. pop() stack : remove element from stack

STACK AS AN ADT
6. display() stack :displaying stack

ALGORITHM TO IMPLEMENT
STACK USING ARRAY

Step 1 : start
Step 2 : Display Menu : 1. push 2. pop 3. display
 4. exit.
Step 3 : read choice
Step 4 : if choice 1 then call push ()
 if choice 2 then call pop ()
 if choice 3 the call display ()
 if choice 4 then call exit ()
 default : Invalid choice
Step 5 : read choice again
Step 6 : If choice between 1- 3
 repeat step 4 else stop

 MULTIPLE STACKs

“When a stack is created using single array, we can

not able to store large amount of data, thus this

problem is rectified using more than one stack in

the same array of sufficient array. This technique is

called as Multiple Stack”

 MULTIPLE STACKs

Example : When an array of STACK[n] is used to

represent two stacks, say Stack A and Stack B. Then

the value of n is such that the combined size of both

the Stack[A] and Stack[B] will never exceed n.

Stack[A] will grow from left to right, whereas

Stack[B] will grow in opposite direction i.e. right

to left.

 APPLICATION OF STACKs

 Convert infix expression to postfix and prefix

expressions

 Evaluate the postfix expression

 Reverse a string

 Check well-formed (nested) parenthesis

 Reverse a string

 Process subprogram function calls

 Parse (analyze the structure) of computer programs

 Simulate recursion

 In computations like decimal to binary conversion

 In Backtracking algorithms (often used in

optimizations and in games)

 REVERSING OF STACKs
Algorithms :

Step 1 : start

Step 2 : accept string

Step 3 : insert string into character by character

 using push method

Step 4 : remove character from stack one by one

 and print using pop method

Step 5 : stop

 REVERSING OF STACKs

polish notation – Expression
Evaluation and conversion

Notation is a way of writing arithmatic expression

Concepts : polish is a way of expressing arithmatic

expression that avoids the use of brackets to define

periorities for evaluation of operators.

There are three notation :

1. Infix notation

2. Prefix notation

3. Postfix notation
21

22

The example ex…pression in various forms-
infix, prefix and postfix

The postfix expressions can be evaluated easily hence infix
expression is converted into postfix expression using stack.

polish notation – Expression

Evaluation and conversion

The following operators are written is in
descending order of their precedence:

 Exponentiation ^, Unary +, Unary –, and not ~

 Multiplication * and division /

 Addition + and subtraction –

 <, £ , =, ¹, ³, >

 AND

 OR

23

The Operators and priorities

24

Algorithm Infix to postfix conversion

25

Infix to postfix conversion

26

• Manual algorithm for converting infix

to postfix

 (a + b) * c
oWrite with parentheses to force correct operator

precedence ((a + b) * c)

oMove operator to right inside parentheses

 ((a b +) c *)

oRemove parentheses

 a b + c *

infixVect

postfixVect

(a + b - c) * d – (e + f)

Infix to postfix conversion

infixVect

postfixVect

a + b - c) * d – (e + f)

(

stackVect

Infix to postfix conversion

infixVect

postfixVect

+ b - c) * d – (e + f)

(

a

Infix to postfix conversion
stackVect

infixVect

postfixVect

b - c) * d – (e + f)

(

a

+

Infix to postfix conversion
stackVect

infixVect

postfixVect

- c) * d – (e + f)

(

a b

+

Infix to postfix conversion
stackVect

infixVect

postfixVect

c) * d – (e + f)

(

a b +

-

Infix to postfix conversion
stackVect

infixVect

postfixVect

) * d – (e + f)

(

a b + c

-

Infix to postfix conversion
stackVect

infixVect

postfixVect

* d – (e + f)

a b + c -

Infix to postfix conversion
stackVect

infixVect

postfixVect

d – (e + f)

a b + c -

*

Infix to postfix conversion
stackVect

infixVect

postfixVect

– (e + f)

a b + c - d

*

Infix to postfix conversion
stackVect

infixVect

postfixVect

(e + f)

a b + c – d *

-

Infix to postfix conversion
stackVect

infixVect

postfixVect

e + f)

a b + c – d *

-

(

Infix to postfix conversion
stackVect

infixVect

postfixVect

+ f)

a b + c – d * e

-

(

Infix to postfix conversion
stackVect

infixVect

postfixVect

f)

a b + c – d * e

-

(

+

Infix to postfix conversion
stackVect

infixVect

postfixVect

)

a b + c – d * e f

-

(

+

Infix to postfix conversion
stackVect

infixVect

postfixVect

a b + c – d * e f +

-

Infix to postfix conversion
stackVect

infixVect

postfixVect

a b + c – d * e f + -

Infix to postfix conversion
stackVect

Infix to postfix conversion
Infix Expression: a + (b*c).

Resultant Postfix Expression: abc*+

Infix to postfix conversion
Infix Expression: A * B + C * D.

Resultant Postfix Expression: abc*+

Infix to postfix conversion

Resultant Postfix Expression: AB+CD-*E/

Infix to postfix conversion

Resultant Postfix Expression:

Infix to postfix conversion

Resultant Postfix Expression:

Infix to postfix conversion

Resultant Postfix Expression: abc-d+/ea-*c*

((a/(b-c+d))*(e - a)*c)

Infix to postfix conversion
Infix Expression: A+ (B*C-(D/E^F)*G)*H, where ^ is an exponential operator.

Resultant Postfix Expression: ABC*DEF^/G*-H*+

Infix to postfix conversion
Infix Expression: A+(B*(C-D)/E).

Resultant Postfix Expression: ABCD-*E/+

Infix to postfix conversion
Infix Expression: A * (B + C * D) + E.

Resultant Postfix Expression: ABCD*+*E+

Infix to postfix conversion
Infix Expression: A * (B + C * D) + E.

Resultant Postfix Expression: ABCD*+*E+

Infix to postfix conversion
Infix Expression: A * (B + C * D) + E.

Resultant Postfix Expression: ABCD*+*E+

Infix to postfix conversion
Infix Expression: A * (B + C * D) + E.

Resultant Postfix Expression: ABCD*+*E+

POSTFIX EXPRESSION EVALUATION
ALGORITHMS :

Resultant Postfix Expression: ABCD*+*E+

POSTFIX EXPRESSION EVALUATION
POSTFIX EVALUATE EXPRESSION : 53+82-*

POSTFIX EXPRESSION EVALUATION
* Evaluate the following postfix expression and show stack after every

step in tabular form. Given A=5, B=6, C=2, D=12, E=4

ABC + *DE\-

POSTFIX EXPRESSION EVALUATION
• Evaluate the following postfix expression

 A : 6, 2, 3, +, - , 3, 8, 2, +, +, * , 2, ^, 3, +

POSTFIX EXPRESSION EVALUATION
• Consider the following arithmetic expression written in postfix notation

10, 2, * , 15, 3, / , + , 12, 3, 2, ↑ , + , + evaluate this expression to find its value

Convert infix into prefix expression
convert the given infix to prefix expression and show detail of stack.

(A-B/C)*(D*E-F)

Convert infix into prefix expression
convert infix string ((A+B) * (C-D))/(E+F) into prefix string with stack.

--- first reverse the string (F+E)/((D-C) * (B+A))

Convert prefix into postfix expr.
ALGORITHMS :

Convert prefix into postfix expr.
Convert the following prefix expression into postfix expression

 *+a-bc/-de+-fgh

Linked stack operation
In stack elements are placed one above other. In the

same manner in stack as linked list, we place node one

above other.

Advantages of dynamic implementation of stack

:

1. No memory wastage

2. No memory shortage

3. No limitation on number of elements

Stack operation using linked list
#include <iostream>

using namespace std;

struct Node {

 int data;

 struct Node *next;

};

struct Node* top = NULL;

void push(int val) {

 struct Node* newnode = (struct Node*) malloc(sizeof(struct Node));

 newnode->data = val;

 newnode->next = top;

 top = newnode;

}

Stack operation using linked list
void pop() {

 if(top==NULL)

 cout<<"Stack Underflow"<<endl;

 else {

 cout<<"The popped element is "<< top->data <<endl;

 top = top->next;

 }

}

Stack operation using linked list
void display() {

 struct Node* ptr;

 if(top==NULL)

 cout<<"stack is empty";

 else {

 ptr = top;

 cout<<"Stack elements are: ";

 while (ptr != NULL) {

 cout<< ptr->data <<" ";

 ptr = ptr->next;

 }

 }

 cout<<endl;

}

Stack operation using linked list
int main() {

 int ch, val;

 cout<<"1) Push in stack"<<endl;

 cout<<"2) Pop from stack"<<endl;

 cout<<"3) Display stack"<<endl;

 cout<<"4) Exit"<<endl;

 do {

 cout<<"Enter choice: "<<endl;

 cin>>ch;

 switch(ch) {

 case 1: {

 cout<<"Enter value to be pushed:"<<endl;

 cin>>val;

 push(val);

 break;

 }

Stack operation using linked list
case 2: {

 pop();

 break;

 }

 case 3: {

 display();

 break;

 }

 case 4: {

 cout<<"Exit"<<endl;

 break;

 }

default: {

 cout<<"Invalid Choice"<<endl;

 }

 }

 }while(ch!=4);

 return 0;

}

RECURSION IN STACK
“Calling function inside itself is called as

recursion. Such function is called as recursive

function”

How recursion works?

RECURSION IN STACK
Advantages :

1. It helps to reduce size of program

2. Easy to maintain function calling

3. Evaluation of stack can be through recursion

Disadvantages :

1. It takes more time bcz of stack overlapping

2. Stack overflow may ocuur

3. Memory requirement is more

4. Efficiency is less

Backtracking algorithm strategy:

4-QUEEN PROBLEM

The N Queen is the problem of placing N chess

queens on an N×N chessboard so that no two

queens attack each other.

•THANK YOU!!!!!!!

• Anandgharu.wordpress.com

• Gharu.anand@gmail.com

