
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“QUEUE”

By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

01 August 2019
.

Introduction of Queue

➢ “A queue is an ordered list in which all insertions are

done at one end, called rear and deletions at another end

called front“

➢ Queue when implemented using arrays has some

drawbacks which can be avoided by circular queue

➢ Queue is used in many applications such as as simulation,

priority queue, job queueetc

Introduction of Queue

➢ One of the most common dataprocessing structures

➢ Frequently used in most of the system software's like

operating systems, Network and Database

implementations and in many more other areas

➢ Very useful in time-sharing and distributed computer

systems where many widely distributed users share the

system simultaneously

Array representation and
implementation of queue

➢ An array representation of queue require three entities :

1. An array to hold queue element

2. A variable to hold index of the front element

3. A variable to hold index of the rear element

Array representation and
implementation of queue

Array representation and
implementation of queue

Array representation and
implementation of queue

Operation on queue
implemented using array

Operation on queue
implemented using array

Operation on queue
implemented using array

Operation on queue
implemented using array

Operation on queue
implemented using array

Queue as an ADT

➢ Create : Create creates an empty queue, Q

➢ Add (i,Q) : Add adds the element i to the rear end of queue,

Q and returns the new queue

➢ Delete (Q) : Delete takes out an element i from the

➢ front end of queue and returns the resulting queue

➢ Front(Q) : Front returns the element i which is at the front

position of queue

➢ Is_Empty_Q(Q) : Is_Empty_Q returns true if queue is

➢ empty otherwise returns false

Queue as an ADT

Queue as an ADT

Queue as an ADT

STACK VS QUEUE

Queue Example

Queue Example

Queue Example

Queue Example

Operation on queue implemented using
Linked list

Operation on queue implemented using
Linked list

Operation on queue implemented using
Linked list

Operation on queue implemented using
Linked list

Operation on queue implemented using
Linked list

Operation on queue implemented using
Linked list

Circular Queue

6-29

Second Approach: Queue as a

Circular Array

• If we don't fix one end of the queue at

index 0, we won't have to shift elements

• Circular array is an array that conceptually

loops around on itself
o The last index is thought to “precede” index 0
o In an array whose last index is n, the location “before” index 0 is index n;

the location “after” index n is index 0

• Need to keep track of where the front as

well as the rear of the queue are at any

given time

6-30

Conceptual Example of a Circular Queue

1

0

12

11

10

1

0

12

11

10

1

0

12

11

10

After 7 enqueues

front

rear

After 5

dequeues

front

rear

After 8 more enqueues

front

rear

6-31

Circular Array
Implementation of a

Queue

rear

front

5

queue

count

8

3

0

1
2 3 4

5

6

7

8

9
10

n-1

n-2

n-3

.

.
.

cq

6-32

A Queue Straddling the
End of a Circular Array

rear

front

4

queue

count

2

98

0

1
2 3 4

5

6

7

8

9
10

99

98

97

.

.
.

cq

6-33

Circular Queue Drawn
Linearly

rear

front

4

queue

count

2

98

0 4321 96 97 98 99…

Queue from previous slide

cq

6-34

Circular Array
Implementation

• When an element is enqueued, the value of rear is

incremented

• But it must take into account the need to loop back

to index 0:

rear = (rear+1) % queue.length;

• Can this array implementation also reach capacity?

6-35

Example: array of length 4

What happens?

rear

front

3

queue

count

1

2

0 321

rear

front

4

queue

count

2

2

0 321

Suppose we try to add one

more item to a queue

implemented by an array of

length 4

cq

cq

The queue is now full. How

can you tell?

6-36

Add another item!
Need to expand

capacity…

rear

front

4

queue

count

2

2

0 321

rear

front

4

queue

count

2

2

0 321 4 765

We can’t just double the
size of the array and

copy values to the same

positions as before:

circular properties of the

queue will be lost

These locations

should be in use

cq

cq

6-37

rear

front

4

queue

count

6

2

0 321 4 765

We could build the new array, and copy the queue elements into

contiguous locations beginning at location front:

cq

6-38

rear

front

4

queue

count

4

0

0 321 4 765

Better: copy the queue elements in order to the beginning of the

new array

cq

6-39

rear

front

5

queue

count

5

0

0 321 4 765

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

cq

Circular Queue

Circular Queue

Circular Queue

Circular Queue

Circular Queue

DeQueue

DeQueue

DeQueue as an ADT

Implementation of DeQueue using linked list

C function for deque using circular array

C function for deque using circular array

Priority Queue

Priority Queue as an ADT

Priority Queue as an ADT

Multiple Queue using array

Application of Queue

