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Introduction of Queue

➢ “A queue is an ordered list in which all insertions are

done at one end, called rear and deletions at another end

called front“

➢ Queue when implemented using arrays has some

drawbacks which can be avoided by circular queue

➢ Queue is used in many applications such as as simulation,

priority queue, job queueetc



Introduction of Queue

➢ One of the most common dataprocessing structures

➢ Frequently used in most of the system software's like

operating systems, Network and Database

implementations and in many more other areas

➢ Very useful in time-sharing and distributed computer

systems where many widely distributed users share the

system simultaneously



Array representation and 
implementation of queue

➢ An array representation of queue require three entities :

1. An array to hold queue element

2. A variable to hold index of the front element

3. A variable to hold index of the rear element
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Operation on queue 
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Queue as an ADT

➢ Create : Create creates an empty queue, Q

➢ Add (i,Q) : Add adds the element i to the rear end of  queue, 

Q and returns the new queue

➢ Delete (Q) : Delete takes out an element i from the

➢ front end of queue and returns the resulting queue

➢ Front(Q) : Front returns the element i which is at the  front 

position of queue

➢ Is_Empty_Q(Q) : Is_Empty_Q returns true if queue is

➢ empty otherwise returns false



Queue as an ADT
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STACK VS QUEUE



Queue Example
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Operation on queue implemented using 
Linked list
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Operation on queue implemented using 
Linked list



Circular Queue
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Second Approach: Queue as a 

Circular Array

• If  we don't fix one end of the queue at 

index 0, we won't have to shift elements

• Circular array is an array that conceptually 

loops around on itself
o The last index is thought to “precede” index 0
o In an array whose last index is n, the location “before” index 0 is index n; 

the location “after” index n is index 0

• Need to keep track of where the front as 

well as the rear of the queue are at any 

given time
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Conceptual Example of a Circular Queue
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Circular Array 
Implementation of a 

Queue
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A Queue Straddling the 
End of a Circular Array
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Circular Queue Drawn 
Linearly
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Circular Array 
Implementation

• When an element is enqueued, the value of rear is 

incremented

• But it must take into account the need to loop back 

to index 0:

rear = (rear+1) % queue.length;

• Can this array implementation also reach capacity? 
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Example: array of length 4

What  happens?
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Suppose we try to add one 

more item to a queue 

implemented by an array of 

length 4

cq

cq

The queue is now full. How 

can you tell?
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Add another item!
Need to expand 

capacity…
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We can’t just double the 
size of the array and 

copy values to the same 

positions as before: 

circular properties of the 

queue will be lost

These locations 

should be in use

cq
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We could build the new array, and copy the queue elements into 

contiguous locations beginning at location front:

cq
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rear
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Better: copy the queue elements in order to the beginning of the 

new array

cq
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rear

front

5
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count

5
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0 321 4 765

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

cq
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DeQueue as an ADT



Implementation of DeQueue using linked list



C function for deque using circular array



C function for deque using circular array



Priority Queue
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Priority Queue as an ADT



Multiple Queue using array



Application of Queue


