COLL

“QUEUE”

By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

01 August 2019,

Introduction of Queue

» “A queue is an ordered list in which all insertions are
done at one end, called rear and deletions at another end

called front*

» (Queue when implemented using arrays has some

drawbacks which can be avoided by circular queue

» Queue is used in many applications such as as simulation,

priority queue, job queue etc

Introduction of Queue

» One of the most common data processing structures

» Frequently used in most of the system software's like
operating systems, Network and Database

implementations and in many more other areas
> Very useful in time-sharing and distributed computer
systems where many widely distributed users share the

system simultaneously

Array representation and
implementation of queue

» An array representation of queue require three entities :

1. An array to hold queue element

2. A variable to hold index of the front element

3. A variable to hold index of the rear element

Array representation and
implementation of queue

During initialization of a queue, its front and rear are set

to —1.
e 11¥AOX
y - Rear = -1
Front = -1

(dsa11.2)Fig. 6.1.2 : An empty queue after initialization
Fig. 6.1.3 shows the status of a queue after insertion of the

element ‘5.

Array representation anc
implementation of queue
RS 1) i 2 8 4 8

(R 6.1.8 A o nbter Insertho of the
| first element '8

= On subsequent fnertions, front remaing ot the sarme plice,
Whete for advince,

i b o8

{w, l! ;&n% w’ |
AN “‘. ':‘1] f
¢ R R

(3RS

0
poghed

'Ffd‘nhﬁ Hﬁrlﬂ

(dnat)T, 61,4 ¢ A quoue nfter Insertion of four elements

Array representation and
implementation of queue

Following points can be observed :

(1) If the queue is empty then front = —1 and rear = -1,

(2) If the gueue is full then rear = MAX - 1,
(where MAX is the size of the array used for storing of queue
glements).

(3) If rear = front then the queue contains just one element.

(4) If rear> front then queue is non-empty.

above representation of the queue

A 2 S

g - ; e e o o ek daa fa 2o AR A M R e LIRS G SRR N 3 '
L e ot o M e M ‘-"‘,:':.\"v' B oy o . f‘-‘l Y R e &7 Sy ¢
S e e S S e v AR SR ‘o Wy | Pt 'SE R
L . - e 3l L) . L i 5 & I ‘ | -A. X8 ! :' + g
- 4 B

xS B " = ISR N BT
"Y'\";\S}IQ?J{'p’h e =L -9 WLy > |

s

Operation on queue
implemented using array

A set of useful operations on a queue includes :

(1)

(2)
(3)
(4)

(5)

(6)

initialize() : Initializes a queue by setting the value of rea
and front to 1.
enqueue() : Inserts an element at the rear end of the queue,

dequeue() : Deletes the front element and returns the same.

empty() : It returns true(l) if the queue is empty and returns
false(0) if the queue is not empty.

full() : It return true(l) if the queue is full and returns
false(0) if the queue is not full,

print() : Printing of queue elements.

Operation on queue
implemented using array

, , , , q, and g, are queue type variables
a) Defining the maximum size of the queue. ‘
(d) Declaring a queue type pointer variable,

(b) Data structure declaration

P=&q,

A pointer variable “P” can be used to store the address of a
queue type variable.

& 'C’ function to initialize().

“R" and “F” store the index of the rear and the front elemen!
respectively. “datalMAX]” is used to store the queue
elements, ,
(¢) Declaring a queue type variable,
Q LI TR (deat1.8)Fig. 6.2.1 : Elements of the structure ‘Q’ can be accessed
My M2 \ :

' through the pointer P
y (P> R,PoF,P—datal])

~ Operation on queue
implemented using array

@ ¢’ function to check whether queu® is empty or

(dsa11.9)Fig. 6.2.2 : The queue is full as there is no space left for
further insertion enqueue()

&= Algorithm for insertion in a queue

(1) Inserting in an empty queue.

R=F=0;

data[R] = x /* x is the element to be inserted */

/* Both R and F will point to the only element of the queue */
e | ueue is full Qr not. (2) Inserting in a non-empty queue.
R=R+1;
data[R] = x

/% rear is advanced by 1 and the element x is stored at the rear

end of the queue */.

Operation on queue
implemented using array

@ ‘C’ function for insertion in a queue using array.

AN 2e) e dind T Ao b o LAl 4 E’J&".ﬁ?}:‘\‘
Ao ol BT N

R E-':- e
D

Ve
o
N

(2) Deletion of the element when the quene length > |

S

(a) x-‘-datafF]

S

(c)
F=3 R=3 .
Before deletion
- g : :?‘ After deletion
[T e (a) Deletion of the last element
@ ¢’ function for deletion in a queue using array ‘ |
‘dequeue()

Algorithm for deletion from a queue :
(1) Deletion of the last element o only element(R = F)

(a) x=data[F]

» =F=-1, F=2 R=4

(b) R 1 F 1’ Aftar deletion

(c) (x) (b) Deletion of an element from the queue when the gqueue

(c) retum(x} e

————— ' length > 1
— - - .‘-- e . .__‘i

e o e

queue

Ing array

eration on
mented us

fe

‘C” function for deletion in a queue.

O

imp

DootN

....»..,..

",

N

N
'_". ,_N.. ()

ATy
\

:_I‘
32

=

4

R
Aol
"

N
A
V.,.V ”ﬁ s\

Queue as an ADT

» (Create : Create creates an empty queue,)

» Add (i,Q) : Add adds the element i to the rear end of queue,

Q and returns the new queue

> Delete (Q) : Delete takes out an element i from the

» front end of queue and returns the resulting queue

> Front(Q) : Front returns the element i which is at the front

position of queue

> Is_ Empty_Q(Q) : Is_Empty_Q returns true if queueis

» empty otherwise returns false

for gueue in an array

Queue as an ADT

&6.2.2 CQueue as an ADT
= Operations on a gusue

Make the gucue empty

itialized()

i

is empty.

ne if gueuce

-

TIXsl

empty() : Dete

if guecue is full.

: DDeterimine

fulld)

iii)

-

Insert an element at the rear end of thhe gueue

-
-

encgucuece()

TOelete the front elerment.

-
-

D

-

nt elements o

deqgueue()

f thhe gueue.

Pri

print) :

i)

R4

t .empfy(queue **p>

-
-

11X}

s 1

-

depe

tuarn

O,

£ sof s
o

on re

t fu

-

Functi
in

Queue as an ADT

— function returns 1 or 0, depending on whether
full or not.

the queue is

- void enqueue({queue *p, int x);

— int dequeue(queue *p);

— function returns the front element.
— void print(queue *p);

— enqueue() operation will cause an overflow if the queue is

— Dequeue() operation will cause an underflow if the queue is
empty().

Queue as an ADT

» 1. Create)
Creates and initializes mew gueue that is cempty. It does
noOt reguire any parameter and returns an empty gucuc.

» e Fongueunel(itermn)

Adds a new clement to the rear of the gqueue. It reguires
the element to be added and returns nothing.

| 2 3. Deqgueue()

Removes the eclement from front of the gueue It does

not require any parameter and returns the deleted item.

| 2 4. isEmpty O

Checks whether thhe guecue is empty or not. It does not
regquire any parameceter and returns a boolean value.

| 2 s, isFull

Checks whether the gueue is full or not. It does not
reguire any parameceter and returns a boolecan value.

= S. SizeO

Returns the total number of celements present in the
gueue. It does not reguire any paramcter and returns an

integer.

STACK VS QUEUE

STACK

Objects are Inserted and removed at
the same end.

In stacks only one pointer 1s used. It
points to the top of the stack.

In stacks, the last inserted object 1s
first to come out,

stacks follow Last In First Out (LIFO)
order,

Stack operations are called push and
pop.

Stacks are visualized as vertical
collections.

Collection of dinner plates at a
wadﬁlmg reception 15 an example of
stack.

QUEUE

Objects are Inserted and removed
from different enas.

In queues, two different pointers
are used for front and rear ends.

In queues, the object Inserted first
15 f1rst deleted.

ueues following First In First Out
(FIFO)) order.

(Jueue operations are called
engueue and dequeue.

(Jueues are visualized as
horizontal collections.

People standing In a file to board a
bus 15 an example of queue,

Queue Example

(ii1) Delete two letters

Example 6.2.1

Consider the following queue of characters, implemented as
array of six memory locations :-
Front=2, Rear=3

QUGUB < =y A' D. e T T

Where ‘' denotes empty cell. Describe the queue as the
following operations take place

(i) Add‘S (i) Add'JS

(iii) Delete two letters

(iv)

Shift towards left to bring all free spaces to the right

(d)
side
(v) Insert M, H, | and delete on letter.

(iv) Shift towards left to bring all free spaces to the right.

"Front=1 Rear=2

(e
G Add'S_ 12 | (dgsat1.11)Fig. Ex. 6.2.1

(v) Insert M, H, I and delete one letter.

1 2 3 < S 6

Gi) Add 71

Front =2 Rear=5
Front =2 FHoai=S

(®
(©) (dsa11.11)Fig. Ex. 6.2.1

Queue Examg

Queue Example

b T AN =
'll'llv W W W

A linear queue using array has a size of 3. Perform the

following on this queue and show the sequence of steps with

necessary diagrams indicating values of front, rear and

contents of queue .
() insert10

(i) insert 30

(v) insert 40

(vii) delete an element

{ix) insert 50

(iiy insert 20
(iv) delete an element
(vi) delete an element

(viii) delete an element

Solution :
Operation

Initial

Insert 10

Insert 20

Insert 30

Queue Example

Queune

T

rear, front

10

1t

rear front

10 20

front rear

10 20 30

front rear

Delete an element

Delete an element

Delete an element

Insert 50

=() =7
20 30
(O
Front rear
=1 =2
30
T
front rear
=2 =2
T T
front, rear
==] =<1
50
G
front rear
=0 =0

Upe€ration on queue implemented using
qLinked list

A set of useful operations on a queue includes - (b) Declaring a queue type variable

(1) initialize() - initializes a queue by setting the value or rear

QG5

and front pointer to “NULL”. ;
| Element g, of the type Q(queue)
(2) enqueue() —inserts an element at the rear end of the queue.
(3) dequeue() — deletes the front element and returns the same.
(4) empty() — It returns true(1) if the queue is empty and returns

false(0) if the queue is not empty.
(5) Print() - It prints the queue elements from front to rear.
(a) Data structure declaration,

N e A,

(dsat112)Fig, 6.2.4 : Memory representation of a queue
Data field of the front node is (¢, F) - da2
© Next field of the front nodes (g, F) = ex
N o s)

JUpe€ration on queue implemented using
qLinked list

E (¢) Declaring a queue Lype pointer

(asai1.14)Fig. 6.2.6 : Initial state of a queue, queue is addressed
through the pointer P

i @ ‘C’ function to check whether queue is empty or
(dsa11.13)Fig. 6.2.5 : Memory representation of a queue with its not.

address in P |
Data field of the front node is (P — F) — data;
Next field of the front node is (P — F) — next;
Data field of the rear node is (P — R) — data;
Next field of the rear node is (P — R) — next;

impliemented using
Uperation on q[%;‘ii 1 11I;t

~ CNIT] Ilp)

enqueue()

enqueue function inserts a value (say

X) at the rear end of the
queue.

— Memory is acquired for the new node.

— Value x is stored in the new node.

= | New node is inserted at the rear end. '
— Special-care should be taken for insertion into an empty

qQueue. Both rear and front pointers will point to the only
element of the queue,

Uperation on

qll:leue lImplemented using

inked list

~ - 3 L

.

"

Initially

e = g

Uperation on qLueue 1mplemented using

inkiq list

R o function dOQUOUO().

dequeue() function deletes the front node of the queue and
retumns the value stored in the node, to the calling program. Front
pointer of the queue is advanced to point to the next node. Special
care should be taken while deleting the last node. As it will make

the queue empty after deletion. Memory used by the deleted node
should be released.

Steps required for deletion of a node from the queue :

P=gqF
x =P —edata

Jperation on qlt‘leue lmplemented using
inked list

@ 'C’funcﬂonfardobﬂo o | @ 'C function for printing queue.

-

: Elements of the queue can be p ::*a‘: by tmmg
Bt | underlyingﬁnkedﬁstgﬁommemm&

Circular Queue

After insertion of five elements in the array (a queue) ;

shown in Fig. 6.3.1,

rear = 4
queue 18 full

front =0

After two successive deletions

rear = 4
queue is full
front = 2

Front Rear

(asai1.18)Fig. 6.3.1 : Queue is full, although locations 0 and 1
are vacant queue in the Fig. 6.3.1 is full as there is no empty
space ahead of rear.

The simple solution is that whenever rear gets to the end of
the array, it is wrapped around to the beginning. Now, the array can
be thought of as a circle. The first position follows the last element.

nextof 4isQ

(deat1.19)Fig, 6.3.2 : A circular array

In a circular array, the queue is found somewhere around the
circle in consecutive positions.

Second Approach: Queue as a

Circular Array

e [f we don't fix one end of the queue at
Index 0, we won't have to shift elements

o Circular array is an array that conceptually
loops around on itself

o The last index is thought to “precede’” index O

o |n an array whose last index is n, the location “before” index 0 is index n;
the location “after” index nis index 0

 Need 1o keep frack of where the front as
well as the rear of the queue are at any
given time

®4-29

Conceptual Example of a Circular Queue

front

\. .. After 7 enqueues) 1

\

l —_—

11 B 11

10 «—fedr 10

After 5
dequeues

Bl— front
L

— e r

After 8 more enqueues

®6-30

cq

Implementation of a

Queue

front queue

8 5

rear count

®46-31

cq

A Queue Straddling the
End of a Circular Array

2

\

\

front queue

4

rear count

®6-32

cq

Circular Queue Drawn

N\

t
fron queu\a 1 2 3 4
2 4

rear count

[inearly

Queue from previous slide

96 97 98 99

® 6-33

Circular Array
Implementation

When an element is enqueued, the value of rear is
Incremented

But It must take into account the need to loop back
to Index O:

rear = (rear+1) % queve.length;

Can this array implementation also reach capacity¢

®4-34

cq

¢q

Example: array of length 4

What happens?
o 1 2 3

front queue

1 3

rear count

Suppose we try to add one
more item to a queue
implemented by an array of
length 4

=

The queue is now full. How

front queue

2 4

rear count

can you tell?

®6-35

cq

¢q

Need to expand

capacity...

We can’t just double the

front queue

2 4

rear count

P
| | size of the array and
copy values to the same
positions as before:

circular properties of the

- - queue will be lost

4 5 6 7

front queue

2 4

rear count

|
N\

These locations

should be in use
06-36

We could build the new array, and copy the queue elements into
contiguous locations beginning at location front:

2 P

front queue

.| -

rear count

®46-37

Better: copy the queue elements in order to the beginning of the
new array

. >

front queue

.| -

rear count

®6-38

cq

New element is added at rear = (rear+1) % queue.length

See expandCapacity() in CircularArrayQueue.java

front

rear

queue

5

count

®6-39

Circular Queue

CTonsider a circular queue of size =S having nitial status as :

Front Rear CTlirculiar gusus
O 3 =2 = =+
1 = = o 1 |

Show the wvalue of front, rear and the contents of circular
Queue after every sSsitep Iin tabular form for the following
Ooperations - (1) R is added (2) Delete 2 letters (3) S, T, U are
added (44) T hree lefters are deleted (5) WV is added

Soluaticn -
Operation Front Reaxr Circular gueue
O 1 =2 3 p= 8
Initial § 2 l = (&]
O 1 =2 3 <
R is aadded b 3 1 i S (- [= l
O 1 = 3 a4
IDelete 2 letters = 3 f = ' l
O 1 2 =3 <%
S.T.U are added = 1 l EE J] § =3 l = '
O 3 = = 7 =
T hree letters arce : § £ TF
deleted
o 1 = 3 a4
WV is added 1 = l 7 VT l l

Circular Queue

o be maintained. In contrast, when a queue is maintained using a

linked hist, two pointers must be maintained - (d) front should point to the only element
(@) address of the front node (for deletion)

Fromt

(b) address of the rear node (for insertion)

front = P
Special care should be taken, while inserting an element in an

empty queuve. Similarly, after deletion of the last element, the
gsa11.240)Fig. 6.3.7
queue should become empty.

If the queue is not empty
Steps for insertion of element x in queue represented using a
circular linked list : ©)

P — next = rear — next
(a) Acquire memory for the node

P = (node *) malloc(sizeof(node))
(b) Store the data x in the node

(¢) newly acquired node should be connected back to itself. (@) rear - next=P

P

P = next= P,

(ass11.23)Fig. 6.3.6

Circular Queue

Steps for deletion of an element from a queue represented
using a circular linked list.

(a) P =rear — pext;

(osar1.2nFig. 6.3.10 P Point to the node to be deleted
P Rear

@ ¢’ function for insertion of an element in a queue
represented using a circular linked list.

Circular OQueue

() release the memory of the node being deleted.

free(P); ode from a
(d) Make the queue empty ? ‘C’ funcﬂon 'or deletion Of t'c‘ierc‘:’?:rt |?ﬂked "3‘-
g queue tepresented using

(e) Return the value stored in the front node

return(x);
}
else

{
(c¢) Remove the front node from the queue

] rear — next = P — next g

(asa11.30)Fig. 6.3.13

(d) release the memory of the node being deleted
' Rear

(dsar12nFig. 6.3.14
(&) return the value stored in the front node
= v,

e ————

Circular Queue

@ “C’ function for printing elements of a queue
represented using a circular linked list.

“R(Address
of rear)

Address of
rear node

In case of a circular linked list, the starting case and the
termination case for the loop used for traversal of the linked list are
In the above function, rear is passed by address as after ~identical
deletion, rear may change. Receiving variable in function int (1) Westart printing from the front node.

(dsat11.32)Fig. 6.3.15

dequeue(node **R) is declared as node **R. R contains theaddress (2) We terminate printing on reaching the front node.
of rear and hence, *R can be used in place of “rear’. Such cases are best handled through do-while loops.

DeQueue

The word dequeue is a short form of double ended queue. It :
. . | . Output restricted dequeue
is general representation of both stack and queue and can be used Q : 0 P]

as stack and queue. In a dequeue, insertion as well delets be ; - . ¢ :
, _ D The following operations are possible in an output restricted

carried out either at the rear end or the front end. In practice, it

becomes necessary to fix the type of operation {0 be performed on dequeue.

front and rear end. Dequeue can be classified into two types -

(i) Deletion of an element from front end

Type of '
ype of Dequeue () Insertion of an element a the rear end

ilipehasg g s (if) Insertion of an element at the front end

2. Output . .
el There are various methods to implement a dequeve.

Fig. C6.1 : Type of Dequeue (2) Using a circular array

=) 1. Inputrestricted dequeue gt |
(b) Usingasingly linked list,

The following operations are possible in an input restricted

dequeue : (c) Usingasingly circular inked list

(i) Insertion of an element at the rear end

(d) Using adoubly linked fist.

(ii) Deletion of an element from front end

| (iii) Deletion of an element from rear end (8) USng d dOllbl)’ circular linked list.

Deletion from

Deletion
from rear

front

\

SIS I e s Bt e A A A D~ S A e e.
:A-\.\._ S e o 3 Tt S R T e R TN e = A e -~
e S Yy 3 BT e TSI = N
B A o X T ST R gy S ~ > =~
R M TR S e -
S S S L < =
i
Insor tion t

the front

Rear Insertion at
the rear

(dsa11.33)Fig. 6.4.1 : A dequeue in a circular array

Operations associated with degueue :

@
(b)
<)
)
e
(€9

=)

empty() : Whether the queue is empty 2

fullC) : Whether the gqueue is full ?

initialize() : Make the queue empty

enqueueR() : Add item at the rear end of the gueue.
enqueuelF() : Add item at the front end of the queue.
dequeueR() : Delete item from the rear end of the gueue.
dequeueF() : Delete item from the front end of the queue.

Timing complexity of various dequeue operations :

enqueue R({) — O(1) — constant time.
enqueue F() — O(1) — constant time.
dequeue R() — 0(1) — constant time.
dequeue F() — O(1) — constant time.

Advantage of degueue : The dequeue is a general

representation of both stack and queue it can be used both as stack
or a queue.

‘DeQueue as an ADT

vii) dequeueF() : Delete the front element.

‘-‘.'\..' 4’“‘ o \,'A;\;:":f\,t_.:“,:: \(h: I.; il o2 | 1! ‘. Sk “ * _v' L'
#define MAX 30/ A.qmuemth‘.mrmm; of 30 elements ¥

viii) print() : Print elements of the queue.

b
"~ @ prototype of functions used for various operations
: .{ | on queue
\]J,IAY .

o < | - vyoid intialize (DQ *p);

2 g e | s n H"'.v-[:

e . s ."‘ti A ?, — intempty (DQ *p) ;
AR BT S - function returns 1 or 0, depending on whether the queue
SR pointed by p is empty or not.

\ X R A 7 : el o
- 9 N b ,..;:: el S ":v | B (TNl B] £l R e N g 1
N 2| e e S S e NN)L S B e AT R AR e SN A

~ int full (DQ *p);

. PA

@ .
Operatlons o #aequete ~ function returns 1 or 0, depending on whether the queue
: o 2 pointed by p is full or not.
i) initialize() : Make the queue empty. | |
— void enqueueF (DQ *p, int x);

— void enqueueR (DQ *p, int X);
: — int deleteR *p);
iiiy full(): Determine if quee is full eleteR (DQ *p)
— int deleteF (DQ *p):

enqueneF() : Insert an element at the front end of the QUEUE. — yoid print (DQ *p);

| | - enqueueR() and enqueueF() will cause an overflow if the
‘ ueuce. |
sert an element af the rear end of the g queuie is full,

o7y Dhalofe the rear element. ~ dequeueR() and dequeueF() will cause an underflow if the
dequeucR() : Delete th | . ‘ - queue is empty.

ii) empty(): Determine if queue is empty.

y) enqueueR():1In

Implementation of DeQueue using linked list

Front Rear

function for deque usmg circular array

Yo '“'"'vj\Jml
¥ mﬁ R

2)

(3) ‘Test, whether the dequeue is full 7 (5) Add item at the front end of the dequeue on addition of item
at the front end, front will move in anti-clockwise direction.

Front will move((Anti clock wise)

‘(d‘!ﬁ.-aS)Fig; 6.4 3

or de

o

W [g .
| gecuenes =g | - - I ‘

- - »

i
.
/,//}}9'/ /
7'/”";5
(

7

4 (/5 "";
s
o
7

(]

[‘////

7 7 7 "y
o
d

/

Priority Queue

Priority queue is an ordered list of homogeneous elements. In
a normal gueue, service is provided on the basis of First-in-first-
out. In a priority gueue service is not provided on the basis of
‘“first-come-first-served” but rather than each element has a priority

based on the urgency of need.

— An element with higher priority is processed before other

elements with Iower priority.

— Elements with the same priority are processed on ‘‘first-come-

first served’™ basis.

An example of priority queue is a hospital waiting room. A
patient having a more fatal problem will be admitted before other
patients. Other applications of priority queues is found in long term
scheduling of jobs processed in a computer. In practice, short

~ecses are given a priority over long processes as it improves

Priority Queue as an ADT

define MAX 30 /* A gueue with maximum of 30 clements */

typedef struct pgucue
{ int data [M A X};
int front, rear:

} pgucue;
= Operations on = priority queue

i) initalize() : Make the gueue emptyv.
it empty() : Determine if the gueue IS empty.

iii) full() : Determine if the gueue is full.

iv) enqgueuel) : Insert an element as per i1ts priority.

PDelete the front element (front element will have

Vv dequeued)
the highest priority)
g print) : Print elements of the gueuc.

= Proitotype of functions used for various operations
on the gusue

void initialize(pgueue *p);:
— int empty(pgucus Fp):
int full(tpgucue *p);:

void engueuse{pgueuse Fp, int x3;

Priority Queue as an ADT

= intdequeuc(pauene *p);
= void print(pqueue *p):

o enqueue() (')].)c‘mti(m will Calse
full,

an overtlow if the queue s

= Dequeue() operation will cause an underflow if the queue
empty.

I8

Multiple Queue using array

Several queues can be stored in a single array. Suppose Al §
is an array of size MAX and NN number of queues are to be stored
in the array. MAX is a predefined constant.

We can divide the available memory A [O.. MAX-1] into N
segments. Each gueue can be allocated one of these segments. For
each Queue i, as shown in the Fig. 6.6.1, R[i] and F[i] represent the

indices of rear and front of queue i.

MAX/N 2><(MAX/N) (N——"l)xMAXfN

\\\\ e \‘<\ O S s o o “:»Q_'_‘j.ff,. 0

\\\’.,

Bio) . Fl{‘t]
F[O] 1]
(dsat1t1.38)Fig. 6.6.1 8

Initial values of R[i]l and F[i] is calculated as given below.
For (i = 0; i< N; i++)
R[i] = F[i] = (MAX/IN)¥*i3

Insert () and Delete () can be performed on any of the
queues. Both insert () and Delete {) have an additional parameter,

queue number.

Application of Queue

Cuctwe is - very useful data structurnc. Various features of

oporating systemn are implemented LESING & griciac.

i
Ex 3
<)

iy

<)

Scheduling of processes (Round Robin Adgorithm)
Spooling (to maintain a guese of jobs to be printed)

A gueue of client processes wating to receive the service
from the server process.

Vanous application software using non-lincar data structure
tree or graph reqguires a gueue for breadth first traversal.
Simulation of a real life problerm withh the purpose of
understanding its behaviour. The probable wasting tGme of a

pmaiation if the following

