
Pune Vidyarthi Griha’s

COLLEGE OF ENGINEERING, NASHIK – 3.

“ Searching & Sorting ”

By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

10 September 2019
.

Introduction
Searching :

“ Searching is a techniques of finding an element in a

given list of elements.”

List of element could be represented using an

1. Array

2. Linked list

3. Binary tree

4. B-tree

5. Heap

Why do we need searching?
Searching is one of the core computer science
algorithms.

We know that today’s computers store a lot of
information.

To retrieve this information proficiently we need
very efficient searching algorithms.

Types of Searching

• Linear search
• Binary search
• Sentinel search

 Sequential search

 Binary search

 Fibonacci search

 Hashed search

 Index sequential
searchearch

4

SEARCH TECHNIQUES

Linear Search
 The linear search is a sequential search, which uses a loop

 to step through an array, starting with the first element.

 It compares each element with the value being searched

for, and stops when either the value is found or the end of

the array is encountered.

 If the value being searched is not in the array, the

algorithm will unsuccessfully search to the end of the

array.

Linear Search
 Since the array elements are stored in linear order

searching the element in the linear order make it easy and

efficient.

 The search may be successful or unsuccessfully. That is, if

the required element is found them the search is

successful other wise it is unsuccessfully.

Advantages Linear Search

 easy to understand.

 It operates on both sorted and unsorted list

 It doest not require array to be in order

Easy to implement

Time complexity O(n)

Disadvantages Linear Search

 Linear search is not efficient when list is large

Maximum no. of comparision are N(n Element).

Not suitable for large problem.

You need to search whole list.

Linear search is slower.

Linear Search Algorithm
Consider an integer type array A with size n. So list of elements

from that array are,

 A[0], A[1], A[2], A[3],………………, A[n-1]

1. Declare and initialize one variable which contents the number
to be search in an array A.

 (variable key is declared)

2. Start Comparing each element from array A with the key

 LOOP: A[size] == key

 Repeat step no 2 while A[size] key

3. if key is found, display the location of element(index+1)

 or else display message KEY NOT FOUND

4. Terminate the program successfully

Linear Search Algorithm
printf(“accept number to search”);

scanf(key);

 for(i=0 ;i<n ;i++)

 {

 if(A [i] == key)

 {

 printf(key is FOUND);

 break;

 }

 }

if(i==n)

 {

 printf(NOT FOUND);

 }

Analysis of Linear Search
Complexity of linear search :

1.Best Case = O(1)

2.Average Case = O(n)

3.Worst case = O(n)

Binary Search
“Binary search is an searching algorithm which is used

to find element from the sorted list”

Concepts :

- Algorithm can be applied only on sorted data

- Mid = lower/upper - formula used to find mid

- Given element is compared with middle element of

the list.

- If key=mid then element is found

- Otherwise list divide into two part.(key <mid) (>mid)

- First to mid-1 or mid+1 to last.

Binary Search
Concepts :

- If given element is less than middle element then

continue searching in first part (first+mid-1)

otherwise searching is second part(mid+1 to last).

- Repeat above step still element is found.

Binary Search
Assume that two variables are declared, variable first and last,

they denotes beginning and ending indices of the list under

consideration respectively.

Step 1. Algorithm compares key with middle element from

 list (A[middle] == key), if true go to step 4 or else go to next.

Step 2. if key < A[middle], search in left half of the list or

 else go to step 3

Step 3. if key > A[middle], search in right half of the list or go

to step 1

Step 4. display the position of key else display message “NOT
FOUND”

Binary Search algorithm
int i, first=0, last=n-1, middle;

 while(last>=first)

 {

 middle = (first + last)/2;

 if(key > A[middle])

 { first = middle + 1; }

 else if (key < A[middle])

 { last= middle – 1; }

 else

 { printf(FOUND) }

 }

if(last < first)

 {

 printf(NOT FOUND);

 }

Advatages Binary Search
1.Binary search is optimal searching algorithms

2.Excellent time efficiency

3.Suitable for large list.

4.Faster because no need to check all element.

5.Most suitable for sorted array

6.It can be search quickly

7.Time complexity O(log n)

Disadvatages Binary Search
1.Element must be sorted

2.Need to find mid element

3.Bit more complicated to implement and test

4.It does not support random access.

5.Key element require to compare with middle.

• Element is searched by
scanning the entire list
from first element to the
last

• Many times entire list is
search

• Simple to implementation

• Time complexity is O(n)

• Less efficient sort

• First list is divided into
two sub-lists. Then middle
element is compared with
key element and then
accordingly left or right
sub-list is searched

• Only sub-list is search

• Complex to implement,
since it involves
computation for finding
the middle element

• Time complexity is O(log2

n)
• More efficient sort

Linear Search Vs Binary Search

17

Binary Search

© Reem Al-

Attas

Binary Search

2. Calculate middle = (low + high) / 2.

= (0 + 8) / 2 =
4.

If 37 == array[middle] return middle

Else if 37 < array[middle] high = middle -1

Else if 37 > array[middle] low = middle +1

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

= (0 + 3) / 2 =
1.

If 37 == array[middle] return middle

Else if 37 < array[middle] high = middle -1

Else if 37 > array[middle] low = middle +1

9/6/201
7

© Reem Al-
Attas

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

= (2 + 3) / 2 =
2.

If 37 == array[middle] return middle

Else if 37 < array[middle] high = middle -1

Else if 37 > array[middle] low = middle +1

9/6/201
7

© Reem Al-
Attas

Binary Search

9/6/201
7

© Reem Al-
Attas

Binary Search

9/6/201
7

© Reem Al-
Attas

Binary Search

9/6/201
7

© Reem Al-
Attas

Binary Search

9/6/201
7

© Reem Al-
Attas

Binary Search

9/6/201
7

© Reem Al-
Attas

Binary Search Routine

}

Binary Search Routine

}

 This additional entry at the end of the list is called as

Sentinel.

 The speed of sequential search can be improved by storing the key

being searched at end of the array.

 This will eliminate extra comparision inside the loop for number od

element in the array.

30

Sentinel search

 Fibonacci search technique is a method of searching a sorted

array using a divide and conquer algorithm that narrows down

possible locations with the aid of Fibonacci numbers.

Compared to binary search where the sorted array is divided

into two equal-sized parts, one of which is examined further,

Fibonacci search divides the array into two parts that have sizes

that are consecutive Fibonacci numbers.

31

Fibonacci search

 Fibonacci search changes the binary search algorithm

slightly

 Instead of halving the index for a search, a Fibonacci

number is subtracted from it

 The Fibonacci number to be subtracted decreases as the

 size of the list decreases

 Note that Fibonacci search sorts a list in a non decreasing

order

 Fibonacci search starts searching the target by comparing

 it with the element at Fkth location

32

Fibonacci search

33

Cases in Fibonacci search

Algorithm

Given a table of records R1, R2, …, RN whose keys are in

increasing order K1 < K2 < … < KN, the algorithm searches for a

given argument K. Assume N+1 = Fk+1

Step 1. [Initialize] i ← Fk, p ← Fk-1, q ← Fk-2 (throughout the

algorithm, p and q will be consecutive Fibonacci numbers)

Step 2. [Compare] If K < Ki, go to Step 3; if K > Ki go to Step 4; and

if K = Ki, the algorithm terminates successfully.

Step 3. [Decrease i] If q=0, the algorithm terminates

unsuccessfully. Otherwise set (i, p, q) ← (p, q, p - q) (which moves

p and q one position back in the Fibonacci sequence); then return

to Step 2

Step 4. [Increase i] If p=1, the algorithm terminates unsuccessfully.

Otherwise set (i,p,q) ← (i + q, p - q, 2q - p) (which moves p and q

two positions back in the Fibonacci sequence); and return to Step 2

 .

34

Fibonacci search

 “Sorting is the process ordering a list of element in either

ascending or descending order.”

 Sorting is the operation of arranging the records of a table

according to the key value of each record, or it can be defined

as the process of converting an unordered set of elements to an

ordered set of elements

 Sorting is a process of organizing data in a certain order to help

retrieve it more efficiently

 35

SORTING

 Any sort algorithm that uses main memory exclusively during

the sorting is called as internal sort algorithm

 Internal sorting is faster than external sorting

Internal Sorting techniques :

1. Bubble sort

2. Selection sort

3. Insertion sort

4. Quick sort

5. Shell sort

6. Heap sort

7. Radix sort

8. Bucket sort

36

INTERNAL SORTING(types)

 Any sort algorithm that uses external memory, such

as tape or disk, during the sorting is called as

external sort algorithm

 Merge sort is used in external sorting

37

EXTERNAL SORTING

 A sorting method is said to be stable if at the end of

the method, identical elements occur in the same

relative order as in the original unsorted set

1. EXAMPLE :

38

STABILITY OF SORTING

 Sort efficiency is a measure of the relative

efficiency of a sort

 It is usually an estimate of the number of

comparisons and data movement required to sort

the data

39

SORT EFFICIENCY

 During the sorted process, the data is traversed many times

 Each traversal of the data is referred to as a sort pass

 In addition, the characteristic of a sort pass is the

placement of one or more elements in a sorted list

40

PASSES IN SORTING

 Bubble sort is a simple sorting algorithm.

 This sorting algorithm is comparison-based algorithm in which

each pair of adjacent elements is compared and the elements

are swapped if they are not in order.

 This algorithm is not suitable for large data sets as its average

and worst case complexity are of Ο(n2) where n is the number

of items.

How Bubble Sort Works?

We take an unsorted array for our example. Bubble sort takes

Ο(n2) time so we're keeping it short and precise.

Bubble sort start with first two element, compare them to

check which one is greater. And swap it.

41

BUBBLE SORTING

42

Algorithm Bubble sorting

Insertion Sort

ALGORITHM OF INSERTION SORT

Selection Sort

Quick Sort Algorithm
 Quick sort is based on divide-and-conquer

strategy

 Quick sort is thus in-place, divide-and-conquer based

massively recursive sort technique

 This technique reduces unnecessary swaps and

moves the element at great distance in one move

Quick Sort Algorithm
The recursive algorithm consists of four steps:

 If there is one or less element in the array to be sorted,

return immediately

 Pick an element in the array to serve as a ‘pivot’

usually the left-most element in the list)

 Partition the array into two parts—one with elements

smaller than the pivot and the other with elements

larger than the pivot by traversing from both the ends

and performing swaps if needed

 Recursively repeat the algorithm for both partitions

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Quick Sort Algorithm

Merge Sort Algorithm

• Merge sort is a sorting technique based on
divide and conquer technique. With Average
case and worst-case time complexity being
Ο(n log n), it is one of the most respected
algorithms.

• Merge sort first divides the array into equal
halves and then combines them in a sorted
manner.

 The most common algorithm used in external

sorting is the merge sort

 Merging is the process of combining two or more

sorted files into the third sorted file

 We can use a technique of merging two sorted lists

 Divide and conquer is a general algorithm design

paradigm that is used for merge sort

89
Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Merge Sort

 Time Complexity T(n) = O(n logn)

90

Merge Sort

How merge sort works

take
 a
n

• To understand merge sort, we
unsorted array as depicted below −

• We know that merge sort first divides the
whole array iteratively into equal halves
unless the atomic values are achieved. We see
here that an array of 8 items is divided into
two arrays of size 4.

• This does not change the sequence of
appearance of items in the original. Now we
divide these two arrays into halves.

• We further divide these arrays and we achieve
atomic value which can no more be divided.

• Now, we combine them in exactly same
manner they were broken down.

• We first compare the element for each list and
then combine them into another list in sorted
manner. We see that 14 and 33 are in sorted
positions. We compare 27 and 10 and in the
target list of 2 values we put 10 first, followed
by 27. We change the order 19 and 35. 42 and
44 are placed sequentially.

• In next iteration of combining phase, we
compare lists of two data values, and merge
them into a list of four data values placing all
in sorted order.

• After final merging, the list should look like
this −

Algorithm of merge sort
• Merge sort keeps on dividing the list into equal

halves until it can no more be divided. By
definition, if it is only one element in the list, it
is sorted. Then merge sort combines smaller
sorted lists keeping the new list sorted too.
– Step 1 − divide the list recursively into two halves

until it can no more be divided.

– Step 2 − if it is only one element in the list it is
already sorted, return.

– Step 3 − merge the smaller lists into new list in
sorted order.

Shell Sort

• Shell sort is a highly efficient sorting algorithm
and is based on insertion sort algorithm. This
algorithm avoids large shifts as in case of
insertion sort if smaller value is very far right and
have to move to far left.

• This algorithm uses insertion sort on widely
spread elements first to sort them and then sorts
the less widely spaced elements. This spacing is
termed as interval. This interval is calculated
based on Knuth's formula as −

• h = h * 3 + 1

where − h is interval with initial value 1

This algorithm is quite efficient for medium

sized data sets as its average and worst case
complexity are of O(n^2) where n are no. of
items.

How shell sort works

• We take the below example to have an idea, how
shell sort works?

• We take the same array we have used in our

previous examples. {35,33,42,10,14,19,27,44}
• For our example and ease of understanding we

take the interval of 4.
• And make a virtual sublist of all values located at

the interval of 4 positions. Here these values are

{35, 14}, {33, 19}, {42, 27} and {10, 14}

We compare values in each sub-list and swap them (if necessary) in

the original array. After this step, new array should look like this −

Then we take interval of 2 and this gap generates two sublists - {14, 27,

35,

42}, {19, 10, 33, 44}

We compare and swap the values, if required, in the original array. After

this step, this array should look like this −

And finally, we sort the rest of the array using interval of value 1.

Shell sort uses insertion sort to sort the array. The step by step

depiction is shown below −

Shell sort Algorithm

• We shall now see the algorithm for shell sort.

• Step 1 − Initialize the value of h

• Step 2 − Divide the list into smaller sub-list of
equal interval h

• Step 3 − Sort these sub-lists using
insertion sort

• Step 4 − Repeat until complete list is sorted

Shell sort Algorithm

8, 3, 2, 11, 5 , 14, 00, 9, 4, 20
Perform shell sort

 For example, suppose that we are sorting elements
from the set of integers in the interval [0, m − 1]. The
bucket sort uses m buckets or counters

 The ith counter/bucket keeps track of the number of

occurrences of the ith element of the list

11
0

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Bucket Sort

Illustration of how this is done for m = 9

11
1

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Bucket Sort

Illustration of how this is done for m = 9

11
2

Bucket Sort

Radix Sort

• Radix Sort is generalization of Bucket Sort

• To sort Decimal Numbers radix/base will be used

as 10. so we need 10 buckets.

• Buckets are numbered as 0,1,2,3,…,9

• Sorting is Done in the passes

• Number of Passes required for sorting is number

of digits in the largest number in the list.

 Radix sort is a generalization of bucket sorting

 Radix sort works in three steps:

 Distribute all elements into m buckets

 Here m is a suitable integer, for example, to sort

decimal numbers with radix 10

 We take 10 buckets numbered as 0, 1, 2, …, 9

 For sorting strings, we may need 26 buckets, and
so on

 Sort each bucket individually

 Finally, combine all buckets

11
4

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Radix Sort

Ex.
Range
0 to 99

0 to 999

0 to 9999

Passes
2 Passes

3 Passes

4 Passes

• In First Pass number sorted based on Least
Significant Digit and number will be kept in same
bucket.

• In 2nd Pass, Numbers are sorted on second least
significant bit and process continues.

• At the end of every pass, numbers in buckets are
merged to produce common list.

RADIX SORT EXAMPLE

• Radix Sort is very simple, and a computer can do it fast. When it is
programmed properly, Radix Sort is in fact one of the fastest
sorting algorithms for numbers or strings of letters.

• Average case and Worst case Complexity - O(n)

Disadvantages
• Still, there are some tradeoffs for Radix Sort that can make it less

preferable than other sorts.
• The speed of Radix Sort largely depends on the inner basic

operations, and if the operations are not efficient enough, Radix
Sort can be slower than some other algorithms such as Quick Sort
and Merge Sort.

• In the example above, the numbers were all of equal length, but
many times, this is not the case. If the numbers are not of the same
length, then a test is needed to check for additional digits that need
sorting. This can be one of the slowest parts of Radix Sort, and it is
one of the hardest to make efficient.

• Radix Sort can also take up more space than other sorting
algorithms, since in addition to the array that will be sorted, you
need to have a sublist for each of the possible digits or letters.

 Heap sort is one of the fastest sorting algorithms, which

achieves the speed as that of quick sort and merge sort

 The advantages of heap sort are as follows: it does not use

recursion, and it is efficient for any data order

 It achieves the worst-case bounds better than those of

quick sort

 And for the list, it is better than merge sort since it needs

only a small and constant amount of space apart from the

list being sorted

12
4

HEAP SORT

 The steps for building heap sort are as follows:

 Build the heap tree

Start delete heap operation storing each deleted

element at the end of the heap array

12
5

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Heap Sort

 ALGORITHM

 1. Build a heap tree with a given set of data

 (a) Delete root node from heap

 (b) Rebuild the heap after deletion

 (c) Place the deleted node in the output

12
6

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

Continue with step (2) until the heap tree is
empty

Heap Sort

Analysis of Heap Sort

12
7

Data Structures Using C++ by Dr Varsha Patil Oxford University Press © 2012

 The time complexity is stated as follows:

 Best case O(n logn)

 Average case O(n logn)

 Worst case O(n logn)

Heap Sort

12
8

Heap Sort

12
9

Heap Sort

13
0

Heap Sort

13
1

Heap Sort

13
2

Heap Sort

13
3

Heap Sort

13
4

Heap Sort

13
5

Heap Sort

13
6

Heap Sort

13
7

Comparisoin of sorting

13
8

Comparisoin of sorting

13
9

Comparisoin of sorting

14
0

COMPARISON OF ALL
SORTING METHODS

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

BUBBLE SORT

15
0

INSERTION SORT

15
1

INSERTION SORT
BUCKET SORT

Thanks ……!!!!

15
2

Prof. ANAND GHARU

ASSISTANT PROFESSOR

Blog : anandgharu.wordpress.com

