Pune Vidyarthi Griha’s

 ———

L
. -
..........

COLLEGE OF ENGINEERING, NASHIK - 3.

“ Searching & Sorting ”’

By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

10 September 2019

Introduction

Searching :
“ Searching 1s a techniques of finding an element 1n a

given list of elements.”

List of element could be represented using an
Array

Linked list

Binary tree

B-tree

Heap

O = WY =

Why do we need searching?

v'Searching 1Is one of the core computer science
algorithms.

v'We know that today’s computers store a lot of
Information.

v'To retrieve this information proficiently we need
very efficient searching algorithms.

Types of Searching

e |inear sedrch
* Binary search
e Sentinel search

SEARCH TECHNIQUES

Sequential search
Binary search
Fibonacci search
Hashed search

Index sequential
search

|_Inear Search

» The linear search Is a sequential search, which uses a loop

to step through an array, starting with the first element.

> It compares each element with the value being searched
for, and stops when either the value Is found or the end of

the array Is encountered.

> If the value being searched Is not In the array, the
algorithm will unsuccessfully search to the end of the

array.

|_Inear Search

» Since the array elements are stored In linear order
searching the element In the linear order make It easy and

efficient.

» The search may be successful or unsuccessfully. That is, If
the required element i1s found them the search Is

successful other wise 1t 1s unsuccessfully.

Linear Search
Find '20'

_—

N N T T AN ST Y A
. 7 . / ~, .
XY XY

Y B
o 1 2 3 a 5

Advantages Linear Search

» easy to understand.

» It operates on both sorted and unsorted list
» It doest not require array to be In order

» Easy to implement

» Time complexity O(n)

’ Disadvantages Linear Search

» Linear search Is not efficient when list Is large
» Maximum no. of comparision are N(n Element).
» Not suitable for large problem.

» You need to search whole list.

> LInear search 1s slower.

LInear Search Algorithm

Consider an integer type array A with size n. So list of elements
from that array are,

A[O], A[1], A[2], A[3]................., A[n-1]

1. Declare and initialize one variable which contents the number
to be search in an array A.

(variable key is declared)
2. Start Comparing each element from array A with the key
LOOP: A[size] == key
Repeat step no 2 while A[size] key
3. if key is found, display the location of element(index+1)
or else display message KEY NOT FOUND
4. Terminate the program successfully .

LInear Search Algorithm

printf(*accept number to search”).
scanf(key).
for(i=0 ;i<n ;i++)
{
if(A[i] == key)
{
printf(key is FOUND);
break:
}
}
if(i==n)
{
printf(NOT FOUND);

}

Analysis of Linear Search
Complexity of linear search :

1.Best Case = O(1)
2.Average Case = O(n)
3.Worst case = O(n)

Binary Search

“Binary search 1s an searching algorithm which 1s used
to find element from the sorted list”

Concepts :
- Algorithm can be applied only on sorted data
- Mid = lower/upper - formula used to find mid

- Given element Is compared with middle element of
the list.

- If key=mid then element Is found
- Otherwise list divide Into two part.(key <mid) (>mid)
- First to mid-1 or mid+1 to last.

Binary Search

Concepts :

- If given element is less than middle element then
continue searching in first part (first+mid-1)
otherwise searching is second part(mid+1 to last).

- Repeat above step still element 1s found.

Binary Search

Assume that two variables are declared, variable first and last,
they denotes beginning and ending indices of the list under

consideration respectively.

Step 1. Algorithm compares key with middle element from
list (A[middle] == key), if true go to step 4 or else go to next.

Step 2. if key < A[middle], search in left half of the list or
else go to step 3

Step 3. if key > A[middle], search in right half of the list or go
to step 1

Step 4. display the position of key else display message "NOT
FOUWND"” o

Binary Search algorithm

int i, first=0, last=n-1, middle;
while(last>=first)

{
middle = (first + last)/2;

if(key > A[middle])
{ first = middle + 1; }
else if (key < A[middle])
{ last= middle - 1; }
else
{ printf(FOUND) }
}
if(last < first)
{
printf(NOT FOUND).

}

Advatages Binary Search

1.Binary search 1s optimal searching algorithms
2.Excellent time efficiency

3.Suitable for large list.

4.Faster because no need to check all element.
5.Most suitable for sorted array

6.1t can be search quickly

/. Time complexity O(log n)

‘Disadvatages Binary Search

1.Element must be sorted

2.Need to find mid element

3.Bit more complicated to implement and test
4.1t does not support random access.

5.Key element require to compare with middle.

Linear Search Vs Binary Search

Element is searched by
scanning the entire list
from first element to the
last

Many times entire list is
search

Simple to implementation
Time complexity is O(n)
Less efficient sort

First list is divided into
two sub-lists. Then middle
element is compared with
key element and then
accordingly left or right
sub-list is searched

Only sub-list is search

Complex to implement,
since it involves
computation for finding
the middle element

Time complexity is O(log:
n)

More efficient sort

Binary Search

0 1 2 3 4 5 6 T 8
2]3) 3| 0] 0| 51|% |6

17

Binary Search

2. Calculate middle = (low + high) / 2.
=(0+8)/2=

0 1 2 3 4 5 6 7 8
20[35)37] 40|45 |0 51| 5 67
1 1 1
first middle last

If 37 == array[middle] | return middle
Else if 37 < array[middle] || high = middle -1
Else if 37 > array[middle] || low = middle +1

© Reem Al-
Attas

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

=(0+3)/2=
0 1 2 3 ‘4 3 6 7 8

BEED

ﬁ’Ist millle I;Tst

If 37 == array[middle] | return middle
Else if 37 < array[middle] | high = middle -1
Else if 37 > array[middle] || low = middle +1

9/6/201 © Reem Al-
4 Attas

Binary Search

Repeat 2. Calculate middle = (low + high) / 2.

=(2+3)/2=
0 1 2 3 4 5 6 17 8
|

101

middle first last

If 37 == array[middle] | return middle
Else if 37 < array[middle] I high = middle -1
Else if 37 > array[middle] | low = middle +1

9/6/201 © Reem Al-
4 Attas

i S0
Binary Search
0 1 2 3 . 5 6 / 8 9
e | 2|58 [12]16]23|38]56]72] 91
=05 2 3 M=4 5 6 7 8 H=9
ke 29l 5 | 8 [12]16]23]38 56|72 91
0 1 2 3 4 =5 6 M=/ 8 H=9
Gt | 2|58 [12]16(23]38 567291
ey GLES), | w7 3w 4 L=$,M=5 m=b 7S N
eums | 2| 5[8 [12 |16 2338567291
L\ C)(Jﬂ

Exampie 7.3.1
[Searching the element 29 in the given array]

Index O 1 =2 3 4 -~ o 7 =
Elements s < 11 15 25 29 30 35 =¥y

index s o = 4 8
elements 2 30 35 <30
=235 Cc =66 j=8
Step 2 : Since kev < afcl] (29 — 309 feft half is selected.
/ t \ el is
s cessiesd.

- ax X

9/6/201 © Reem Al-
! Attas

Solutiom =
Searching 10

lo 1 2 3 4 5 & 7 8 S 10 |
o 17 23 38 45 50 57 76 7O SO 100 i | S
L.y T T o |10 | =
|| | Ik |
Steplzf‘:»xnceIO<A[= K — 1 = 4
[1
O =3 = 3 k
= 17 =23 38 < =2
1|
i B] |
Step 2 : Since 10 ==A [2Z], =K — 1 =1
o | |
o 17 | 2 T
i > T | o i o
ik F | |
Step 3 : Since 10> A [0, =K + 1 =1
: 3

1 1 1

17

T T T

| + 5 x

Step 4 : Since 10 <A [1l.j=K —1 =0

Ae 3 Becomes less thhan . element 10 is not o the array A E 3

e ——r) — — 5
vl ¥ o ———r— [illm
=11 =[] |4]
- F e ——— e 3

B '.lrJuLTl - 0 o
- O o % A 7| ¢
L\ . rlllillil <o m m
e [e o e N O A

9% 6[LI1.IJ 9..|...LI[.IJ ..O..II.TIFI.I.J w
| S A
| M H[I]I....J ...*...IJ.I..'LII Hrlllllrlm
©O ﬂ|rl|ll
NS KTI.TI.'J.LK KIIJI.I

I..\ﬂtlL.L (et VT A

[ﬁ‘leLo 3 ST 1| 5t §

..cw1. vl - m =) o
w Ao w >r._ >F.L.|..L|1.mm
nrm=Emmrast arakisauts

Q y “lxl T .

0| | ° |R 18l al 111 ¥ 3

T T T i i

el of & @~ (» ¢ Cly ., =lm E

m 7. :l‘le9mTa3mmT.USW

W | ¥ ._ 51 WT... W..I‘IL.IL WIII[¢

.mﬁ.l]...JMl\llL‘rls : _

‘\j

Binary Search Routine

Sorted array

| ?.\3 \HTS:&G \‘] Elomant fo bi, goarohad

integer binary_search(imfby.g, integer n, idbeger X}t

integer low, high, mid | = ' Middia slemant
low 1= 1 \ 2—:3‘M .El!!“ﬂ‘!]'lﬂi |

high t= m Low ~ High
while low = high:

mid := (low + High) / 2
if ajmid) = x: —> ((T7{3lYy g\ 1\8\4] I x=5. Elemont found

break
else if afmid] is less than x: igh fx=8
low = mid+l__y ﬂ 2 3 Seareh anly the right part
else: -

if x =2
Search only the left part.

high = mid-z.—}

return mid

Step 1

Step 2

Step 3

Iitem to be searched = 23

Return location 7

> i B ri 8 13 19 20 23 29
0 2 3 4 o (& r 8
a [mid] = 13
13 < 23
beg=mid+ 1=5
end =8
mid = (beg +end)/l2=13T2=6
> 1 | 5 { 7 { 8 | 13 19 20 23 29
e _ —_———— e - e e e e
9 2 3 4 o & Fi 8
a [mid] = 20
20 < 23
beg=mid+ 1=7
end =8
mid = (beg +end)/l2 =152 =7
> 1 . 7 { 8 | 13 | 19 | =20 23‘29‘
__________ r - I E U S
0 2 3 A 5 6 7 8

Sentinel search

This additional entry at the end of the list is called as
Sentinel.

» The speed of sequential search can be improved by storing the key
being searched at end of the array.

» This will eliminate extra comparision inside the loop for number od

element in the array.

S

C s - T e e
- = SEa A SR TR e e
- ——— e B P el N -~ -
RS 3}'% S s L R e 30
- s ST AN PRI R D

Fibonacci search

Fibonacci search technigue is a method of searching a sorted
array using a divide and conquer algorithm that narrows down
possible locations with the aid of Fibonacci numbers.
Compared to binary search where the sorted array is divided
Into two equal-sized parts, one of which is examined further,
Fibonaccli search divides the array into two parts that have sizes
that are consecutive Fibonacci numbers.

The Fibonmnacci Seqgquence

htitps-rcodimnglfellow.corr?

1.1, 2,.3.5.,8.13.21.,.34.,55.89.144 .233,.377.

1T+=1=22 13+21=34
1+2=33 21 +34=355
2+3=95 34+55=—89
3+5=8 SS+89=—144
S+38=13 S8O9+144=233
S+13=21 1A4AA4A+233—=377

Fibonacci search

Fibonacci search changes the binary search algorithm
slightly
Instead of halving the index for a search, a Fibonacci

number Is subtracted from it

The Fibonaccl number to be subtracted decreases as the

> Slze of the list decreases

Note that Fibonacci search sorts a list In a non decreasing

order

Fibonacci search starts searching the target by comparing

* > 1t with the element at Fkth location °

Cases in Fibonacci search
Case 1: fequal the search ternunates;

Case 2 if the tarsel 1s oréater and 7715 1, then the search temunates with an unsucesssiul search:
else the search continuies at the nght of list with new values of Jow, ligh and mid as
mid=mid+Fs Fi =Frs and Fy=Fis
Case 3:1f the target 1 staller and £, 15 0, then the search termmates with unsuceessful search;
else the search contmuss af the left of ist with new values of Tow, heh, and nud a3
mwd=mid—F f=Fand Fi=Fx

The search confies by esther searching at the left of nud or at the nght of md m the hst.

Fibonacci search

Algorithm

Given a table of records R1, R2, ..., RN whose keys are in
increasing order K1 < K2 < ... < KN, the algorithm searches for a
given argument K. Assume N+1 = Fk+1

Step 1. [Initialize] | — Fk, p «— Fk-1, g <« Fk-2 (throughout the
algorithm, p and g will be consecutive Fibonaccli numbers)

Step 2. [Compare] If K < Ki, go to Step 3; iIf K> Ki go to Step 4, and
If K = Ki, the algorithm terminates successfully.

Step 3. [Decrease 1] If g=0, the algorithm terminates
unsuccessfully. Otherwise set (i, p,) < (p, 9, p - 9) (which moves
P and g one position back in the Fibonacci sequence); then return
to Step 2

Step 4. [Increase 1] If p=1, the algorithm terminates unsuccessfully.
Otberwise set (I,p,q) «— (i+qg,p -0, 29 - p) (which moves p and g
two positions back in the Fibonacci sequence); and return to Step 2+

SORTING

“Sorting IS the process ordering a list of element In either

ascending or descending order.”

Sorting Is the operation of arranging the records of a table
according to the key value of each record, or it can be defined
as the process of converting an unordered set of elements to an

ordered set of elements

Sorting Is a process of organizing data in a certain order to help

retrieve it more efficiently

35

INTERNAL SORTING(types)

Any sort algorithm that uses main memory exclusively during
the sorting Is called as internal sort algorithm

Internal sorting Is faster than external sorting

Internal Sorting techniques :
Bubble sort
Selection sort
Insertion sort

. Quick sort

Shell sort

Heap sort
Radix sort

" Bucket sort 36

T e Ol e Y =

EXTERNAL SORTING

Any sort algorithm that uses external memory, such

as tape or disk, during the sorting 1s called as

external sort algorithm

Merge sort Is used In external sorting

37

STABILITY OF SORTING

A sorting method Is said to be stable If at the end of

the method, 1dentical elements occur In the same

relative order as In the original unsorted set

EXAMPLE :

when values are same. The bal
with green color and value 10

dgﬁmm before the orange color
b with value 10. Similarly

order is maintained for 20.

Sorting 1s stable because
the order of balls i1s maintainecd

SORT EFFICIENCY

Sort efficiency Is a measure of the relative

efficiency of asort

It 1s wusually an estimate of the number of
comparisons and data movement required to sort

the data

39

PASSES IN SORTING

During the sorted process, the data is traversed many times

Each traversal of the data Is referred to as a sort pass

In addition, the characteristic of a sort pass Is the
placement of one or more elements In a sorted list

40

BUBBLE SORTING

» Bubble sort Is a simple sorting algorithm.

» This sorting algorithm Is comparison-based algorithm in which
each pair of adjacent elements Is compared and the elements
are swapped If they are not In order.

» This algorit

nm IS not suitable for large data sets as Its average

and worst case complexity are of O(n2) where n is the number

of I1tems.

How Bubble Sort Works?
» We take an unsorted array for our example. Bubble sort takes

O(n2) time so we're keeping It short and precise.

Bubble sort start with first two element, compare them to
check which one Is greater. And swap It.

41

Algorithm Bubble sorting

1. In Bubble sort pairs of adjacent elements (start from O
and 1* locations) is compared and then swapping is
performed when first element is greater than another
element in pair.

2. Repeat step 1 until (n - 2) position element is compared
with (n - 1) position element.

leted and largest value in list

th

3. Here first iteration is comp
is stored at (n - 1) location.
4. Now start second iteration, Repeat step 1 until (n - 3)
position element is compared with (n - 2) position i
5. If there are n elements, then (n

(3=][===z (==][2=]]

r

27][‘35 [0

14 ‘|*' s |

-

In this case, value 33 is greater than 14, so it is already in sorted locations.
Next, we comparls 33 with 27.

1458 |2 |38][10]

We find that 27 is smaller than 33 and these two values must be swapped.

[>
The hew array should look like this —
EHEEEE

Next we compare 33 and 25. We find that both are in already sorted
positions.

)

18] 27 [][][10

Then we move to the next two values, 35 and 10.

oo [0

We know then that 10 is smaller 35. Hence they are not sorted.

EREIEIEED

We swap these values. We find that we have reached the end of the array.
After one Iteration, the array should look like this —

14| 27 | 33][10 a8
| | I L | I |

To be precise, we are now showing how an array should loek like after each
iteration. After the second iteration, it should look like this —

N

14|27 | 10

Notice that after each iteration, at least one value moves at the end.

[14 -|L1o \{ 27J[33|[35]

»

And when there's no swap required, bubble sorts learns that an array Is
completely sorted.

»

)=

ol] [

Now we should look into some practical aspects of bubble sort.

Algorithm

We assume list Is an array of n elements. We further assume that swap
functien swaps the values of the given array elements.
Hegin SubblsSort(list)
for all =lsments of list
If 1dstl1] » 1dstli+1]
swep(listis], l1istivl])
end if
znd far

return ldist

erd BubbleSort

Implementation in C

#incluge <stdio.h>
FHnclude «<«stdbool. h>»

#defing MAX 19

int 1dst{MAX] = (1,8,4,6,8,3,5,2,7,9);

void disalay()

}

int 33

preintf{T[7};

// navigate through &1l jtems

for(i =05 1 <« MG 1)
printF{THd ©,1istii]);

¥

prEIneF{ " I\n");

veid bubbleSort{] |

intT tanp,;
int 1, 1

boel swapped = false;
J/ doop throoegh s11 numpers

for(d = 9; 1 < MAX-1: I3 [
swapped = falss;

Sl

/7 1aop throwgh numbers falling ahead
fForl] =83 § © MAX-1-1; js+1
prirtE(" Itens cowparad; [%4, %4] ", list]§],list§511);

77 check if next nunber iz ipssar than current no
£r cwaEp the numbers.,

// (Bubble Up the highest pupber)

HF(1ase{d] » MHse(d+2]) |
temp = List{F];
list{§] = Lise[j+11;
List] j+1] = Temp:

sWapped = Toues
printf(” = swapped [&d, =]\n",list{jl, List{j=11);
teisa {
printf("” => net swapp=d\n");
)

}

ff iF po pupber Was swapped that means
/f array is sorted npow, break the loop.
1f(swapped) |
break;
)

printf{“Iteration Rdie: “,(3+1));
display();

mainl) 1
pedintfl "Input Aresy: 713
dizplay();
peEntFTAn™);

BBl eSart),

print+({ "\nOuspux Arrsy: ");
Adlsplay();

If we compile and run the abeve program, 1t will produce the following result

em—

Output

Input Array: [L 8468 3527 2]

Items cnmpared: 1. 8 1 =» not ﬁwapped

Items compared: Oa 2 =» =wapped (4. 81
ITams comparag: 8, & =» swappad [&, 8]
Itams Tomparsd: 2, 2 = SwWwapp=sd [8, 3]
IThem=s compared: g, X =wEanned 1

[TP B | b d e Pl il (]
]
L
- — == =S I
T I
-

e T s e O T N Y T T

ItTems compiar-ed: 8, 5 =¥ syapped [5, 8]
ITtems comparsid; 8, 2 =» =Wapped [2, 8]
ITems compared: &, 7 => swWwapped [7. &]
ITems compared: 2, 2 =» NOT swapped

lteratinn A=

ITams
ITanms
ITams
ITems=
items
iToms
ITems

iTems

lteratinn 25

ITems
ITams
I~eams=
ITTams=
itTems
1oems

ITems

Iteration 35: [1 @ 3

Items
ITeams
ITams
ITems=
items

1Tems

comparan;
ComEarsgd;
Comparsg;
ompered:
Comiggred:
comparaid;
compared:

compared!

comparan;
ComBparsg;
compsared:
comMpares:
Comigared:
coamparaid;

compared:

compared
comparad:
Comparsg;
compered:
Comiggred:

comparaid;

i+ £ 8

it £ 88

I__I =i —i =i 1__l
fi
|

W = e =

L

b

(e T SR T T T N T
LI
L

- rﬂ:hl th

e I TN

p—

W
-

3 =

Ju e
“« s

L

h h
-

= (I i
- -

-
-

L
-

i

i

e
-

L
- -
for LY

L

i

b

£ =

W & o

e

|

W e 03

-'.4 ia
o '
T |

-
p—

W

U pa

i

Oy

ol el el ol eyl Pl el ed) el el el i

b= o

bl el el i

e o

=]

e

78 2]

ot swapped
Mot sSwWapped
swappen |2,
=wappeg [3,
sHapped 15,
=Wapp=d [2,
not suWapped

noT Swapped

g 2 1

not sweapped
swapped |8,
=wappeg [3,
foT =wannetd
cHatiped 2,
noT =uappsd

not swapped

=

swspp=d (8,
not swapped
not swapped
=wanppneg [2,
noT swWafiped

noT =uappsd

i th
ol] (]

LI
e o

e e
==

LI
=

1]

Iteration 4 (61324567 8¢]

=3 not swappet

e

C— e R ST St TR S
]
!

Items comparsd: [8.
Items comparad: =¥ NOT swapped
Itams comparsd: - swapped |2, 3]

ITems compared: => (10T swanpad

l_—h =i —i | e |
Fie L i

E] ™
W e ke T

items Compared.:

Tierption 54 [81 23456784]

=» nOT sWapped

Items compared: [¥, L] => not swapped
items compared: [1, 2 1 =» not syapped
Items comparsd! [2, 2 1 =» not swapped
Items comparsd: [230 £ 1 =» not swappsi

Gutput Array: (8123436780 |

1 array with n = 6 s 96 2 8 1
First pass i =1

Fourth pass i = 4

Comparisons { ;

Example 8.3.1

Show output of each pass using bubble sort to arrange the

following nos. in ascending order. Write pseudo C code for
bubble sort: 10, 9, 8, 7,6, 5,4, 3, 2, 1.

Solution -

Pass No. Data at the end of thhe pass

1. 9.8, 7,6,5,4,3,2,1, 10
Z. 8,7.6,5,4,3,2,1,9, 10
3. 7.6,5,4,3,2,1,.8,9,10
4, 6,.5.4,3,2,1,7,8,9, 10
l S. S5.4.3,2,.1,6,7,8,9, 10
6. 4,3,2,1,5,6,7,.8.9. 10
Pass No. Data at the end of the pass -
7. 3,2,1,4,5,6,7,8,.9. 10
8. 2,1,3,4,5,6,7,8,9. 10

o 9, 1,2,3,4,5,6,7,8,9. 10 %

Write pseudo C code to sort a list of integers using bubbla
sort. Show output of each pass for the following list :
10, 5,4,18, 17, 1, 2.

Solution :
Pass - |, i=1:

1=0 10 5 4 18 117 1 2
o D

j =1 5 10 4 18 17 1 2

L
=2 5 a 10 18 17 1 2
&k A
j=3 5 4 10 18 17 1 2
Ao
=4 s 4 10 17 18 1 2
Ao

J=6 5 4 10 17 1 18 2

h___#

S <4 10 17 1 2 18

Pass - ll,i=2

Pass-1V,i=4

j=0 4 & 1 2 10
=1 4 § 1t 2 10
KA
j=2 4 1 § 2 10

RS |

4.1 2 & 10
Pass-V,i=5

=0 4 1 2 5§ 10
O

j=1 1 4 2 5 10

1 2 4 5 10

Pass~Vl,I=4

Pass-VI,i=8

J=0 1 2 4 5 10 17 18 &

17
17
17
17

17
17

17

18
18
18
18

18
18
18

| Sort the following st in ascending order using bubble ol “"< ™ output of sach pass using bubble san lo anange
Show all passes. Analyze time complexity. the lolowng NUMBErs © a8Cending Order
9,7,-2,4,53-6,218 PO.87.7H. 85 43.%2.19.7.0, ~17

Solution :

-17

-17

-7

Insertion Sort

This is an In-place comparison-based sorting algorithm. Here, a sub-list is
maintained which is always sorted. For example; the lower part of 2an array is
mialntalned to be sorted. An slement whilch Is to be 'Insert'ed in this sorted
sub-list, has to find its appropriate place and then it has to be inserted there.
Hence the name, insertion sort.

The array is searched seqguentially and unsorted items are meved and
inserted into the sorted sub-list (in the same array). This algorithm is not
sultable for large data sets as lts average and worst case complexity are of
O(nZ), where n is the number of items.

How Insertion Sort Works?

We take an unsorted array for our example.

|- 14 aa |]27 H 10 : 35 \ 19” 42 as

Insertion sort comparas the first bwo slements.

RE == =]

It finds that both 14 and 33 are already In ascendin_'g order. For now, 14 is in
sarted sub-list.

14

Insertion sort moves ahead and compares 33 with 27.

[14 Ha:fH 27 J|-1o H 35‘“.19 H a2 |[44J

And finds that 33 |s not ih tha correct position.

e

It swaps 33 with 27. It also checks with all the elemants of sorted sub-|ist.
Here we see that the sorted sub-list has only one element 14, and 27 is
dgreater than 14. Hence, the sorted sub-list remalns sorted after swapping.

[14J[laa IwJ 35||19J[42 |[‘

32|10 ss] 10][a2][4]

10][5][10] 42 || 44]

By now we have 14 and 27 in the sorted sub-llst. Next, It compares 33 wlith
10.

ﬂJ[ﬂ][aa “ 10]L 35“{19 N 42][44 J

These values are not ih a sorted order.

) (=) 2) =) o [o2 (]

So we swap them.

(4] (=) (30 = || 3] 10][42 [s+

Howaver, swapping makes 27 and 10 unsorted.

- (BEEE) =))]

14][1022 s || 2| 10 || 42 || 4]

Adaln we find 14 and 10 in an Unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-list

of 4 [tems.
[10 Hujl 27 || 33 H 35 ‘ 19” 42

This procass goes on until all the unsorted valuss are covered in a sorted sUb-
list. Now we shall see some programming aspects of Iinsertion sort.

()

Algorithm
Now we have a bigger picture of how this sorting technique works, so we can
derive simple steps by which we can achieve insertion sort.

Step 1 - If it iz the first element, it iz glready sorted. return 1;

Step 2 - Pick next slement

‘Step 3 - Compare with 311 elesments in the sorted sub-lIist

‘Step 4 - ShiFt 31l the elenents in the sorted sub-list that ig greater than the

vaive to be sorted
Step 5 - insert the value
Step & - Repeat until Iist iz sorted

ALGORITHM OF INSERTION SORT

1.

First iteration starts with comparison of 1% locatj @_:.
element with 0" location element in the list, if '
location element is less then it is inserted at 0" location
and at O location element is moved one position righg
with all next elements. ‘
Like that, each element in the list is compared with a]]
previous elements, If the element is less than any
previous element then the element is inserted
position of previous small element and the position of
that previous element shifted one position to right. |

The same procedure is repeated for all the elements in

list.

12 3 4 5 6 Initial unsorted ligt 'I 3" iteration (place a[3) at its correct place)

Ul‘“”“, '1 01 5 9 264!
\ d Sorted unsorted

A list of sorted element a list of unsorted 4

(a list of single element is element 4™ iteration (Place a[4] at s correct place)

R | . lo | 2 5 9, ls 4 ’

1% iteration (place element at location ‘1’ ie. a[l], at&.q |

orrect place) sorted Unsorted

0 1 2 3 4 56 5™ iteration (Place a[3] at its correct place)
,:OSH~19264J '-012569]!4 ’
Sorted unsorted Sorted unsorted

2™ iteration (place a[2] at its correct place) 6" iteration (Place a[6] at its correct place)

015’19264} 0124569

Fig. 8:2.1 : Sorting of elements using insertion 507

Sorted unsorted

PT—

Elements 20 10 & 6 4 2 1 -

0 20 8 6 4 2
8 10 20 6 4 2
6 & 10 20 4 2
4 6 8 10 20 2
2 4 6 8 10 2
i 2 4 6 & 10

Show all passes to sort the values in descending order using insertion sort.
56,12,84,56,28,0-13,47,94,31,12~2

Solution ;

Initial 56 12 84 56 28 0 -13 47
Afterpass1 |56 12|84 56 28 0 -13 47

Afterpass2 [84 56 12|56 28 0 -13 &7
Afterpass3 [84 56 56 12|28 0 -13 47
Afterpass4 |84 56 S6 28 1210 13 47

AfterpassS |84 S6 S6 28 12 0 |-13 47

Afterpass6 |84 56 S6 28 12 0 -13 |47

£ £

4

3

Afierpass? [B84 S6 56 47 28 12 0 -13 | 94

-13

Afterpass8 [94 B4 S6 56 47 28 12 O

3
3l

3l

£} |

3

3

3l

3

31

12

12

12

12

Afterpass9 |94 84 S6 56 47 31 28 12 0 13| 12

Aﬂatm10|9¢84563647312812!20 13

- 13

Afterpass 11 94 84 56 56 47 31 28 12

12

0

T
are fivg infegers 1,7, 3, 2, 0. Sor them using Inserton

Hence the
sorted list = [0, 1, 2,3, 7)

Sort the following nos. using insertion sort. Show all Passes :
50, 10, 78. 40, 30, 022, 04, 15.

Selection Sort

Sefection sort s a simple sorting algorithm. This sorting algerithm is an in-
place comparison-based algorithm in which the list is divided into two parts,
the sorted part at the left end and the unsorted part at the right and.

Initially, the sortad part is empty and the unsorted part is the entire list.

The smallest element s selected from the unsorted array and swapped with
the |leftmest element, and that element becomes a part of the sorted array.
This precess continues moving unserted atray boundary oy one element to
the right.

This algorithm is not suitable for large dats sets as its averages and worst case
complexities are of ©(n<), where n Is the number of items.

How Selection Sort Works?

Consider the following depicted array as an -example.

|-14 33\2?‘ mH:aa\j 19-: a2 || a4

Faor the first pesition in the sorted list, the whole list Is scanned seqguentially.
The first position where 14 |s stared presertly, we search the whole list and
find that 10 is the lowest value.

(1420)= (10 o5 [10 42 (4]

So we replace 14 with 10. Aftet one Iteration 10, which happens to be the
minimum value In the list, appears in the first position of the sorted list

0[50 [27 |[sa][0][10 [42]

For the second peosition, where 33 is residing, we start scanning the rest of
the list in a linear manner.

Ljo)I mﬁH 27 H 14 N 35 ” 19 ” 42 |‘ a4 |

We find that 14 is the second lowest value in the list and it should appear at
the second place. We swap these valuas.

0|3 | 27 | 1435 [19 [42 || 4
Aftar two iterations, two least values are positioned at the beginning in a
sorted manner.

Fallowing s = ‘ —tiar

Algorithm

SEEp L - S=0 PEN S meIcEnT S

Eirp 2 - S==—h iz = cT=w— = the lize
FEep 3 - EESp a=h vassE = oSesTmoe

EEdH £ - Tieresset M b peind e HeeEtelamir
Siap 5 - SSpeT orsil It s oo

Pseudocade

procedurs seleciionm SOk
195t 1 arrey of ltens

i S LB ae L Ec.
ford =41 ton -1
= s=t curpeni eleseni, &5 =inlemm® s
=N e
I% Ehach! 2N 2lamnt o b i 4

/% ixap the minleom slement w=iif INE dwrTEnt Slesmntey
iF drsigeids B § Then

=ap Ifcsimin] and List{E)
epg iF

£md ' precsdyrs

6.12.1 Algorithm of Selection Sort

. In first iteration first element is compared with rest of
elements. If first element is greater than that then they

are swapped.

2. After completion of first iteration smallest element is
stored at 0™ location.

3. In second iteration second element is compared with

rest of (3™ to n™ location) elements and process of

swapping is repeated.

4. I the list contains n elements, then (n - 1) iterations are

required.

9 A4 11 2 4 original amay
><E 11 4 After first pass

><9 After second pass
>1< After Third pass

After forth pass

1

1 2

i 2

1 2 4 5§ 9 11 Aftertifth pass
Ilustration of selection sort

&"Q‘N all the passes to sort the values in descending order :
Msﬁ,as 0, —13, 47, 94, 31.

Solutlon -
Original array 84 56 28 0 -13 47 94 31
After pass 1 94 56 28 0 -13 47 84 31
After pass 2 94 84 28 0 -13 47 56 31
After pass 3 94 84 56 0 -13 47 28 31
After pass 4 84 84 56 47>-§ch 28 31
After pass 5 94 84 56 47 31?:?-:13
After pass 6 84 84 56 47 31 .%{0 -13

After pass 7 94 84 56 47 31 28 0 -13

Examplie 8.4.4

Consider the following numbers sort them using “Selection

sort”. Show the output after each pass. 50, 20, 70, 40, 30
Solution :

Original 50 20 70 40 30
data

After 50 4750

70 40 30
fhiea >><<

After 20 30 70 40 24 50
Pass 11

Sort the following list using selection sort. Show output
each pass and write time complexity.
Data : 10,6,13,7,5,51,27.,2,3,15,-3,4.
Solution :

Selection Sort

29 1= smallest

=6 15 smallest

ST 1 smalless

52 s srAalis=sy

66 15 smiaiest
NG SWaDpirg

72 iv srmislicst

87 = srmmafiest
Ne SWapoindg

ARARASNS

13 29 36 | 51 52 66 | 72 87 98 sorting completed

(Y w3resour=a Lo

Fass | Ta

Fass 13
Fass i 13
Fassd 13
Fass 13
Passf 13
Pass] 13
motted eletetts

33

a5

a4

a4

a4

a4

a4

13

i

i

42

3

3

3

3

24

13

[

[

i

i

i

i

3

il

il

il

Bl

67

37

37

4,

4

24

35

42

I

T

hd

37

hd

hd

o

b

b

i

o

3

3

37

3

af

ar

i

ar

(neinal unsorted array

Elements | 76 87 36 53 23 14 (
Index 1 1 Z o 4] §
Index 0 1 2 3 4 5 & I minpos
18 67 30 00 3 14 5 i i
Pass 1 I | 87 36 5% 28 14 16 1 3
Piss 4 B 14 a5 36 55 BT 76 4 4
Pass b & 14 23 36 it an 16 3 D
Sorted array £ 14 23 36 bb 67 16

Quick Sort Algorithm

Quick sort Is based on divide-and-conquer

strategy

» Quick sort Is thus in-place, divide-and-conquer based

massively recursive sort technigue

» This technigue reduces unnecessary swaps and

moves the element at great distance in one move

Quick Sort Algorithm

The recursive algorithm consists of four steps:

If there is one or less element in the array to be sorted,

return immediately

Pick an element in the array to serve as a ‘pivot’

usually the left-most element in the list)

Partition the array into two parts—one with elements
smaller than the pivot and the other with elements
larger than the pivot by traversing from both the ends

and performing swaps if needed

. Recursively repeat the algorithm for both partitions ,

Quick Sort Algorithm

1. 1 _owest index element set as pivot element.

> Take two index variable, i and j. i points to 1% location

element and j points to (n—l)th location element.

than pivot element. Here i will incremented by 1

greater element is Nnot found.

than pivot element. Here j will be decremented by 1 till
small element is not found.

S. If these two elements are found, they are swapped.

6. The process ends when these two variables are crossed
or meet (In above example they are crossed). The 1
value at index j is swapped with pivot and list
divided into 2 sublists.

e

Above steps are repeated on these two sub arrays

(sublists) until all sub arrays contain only 1 element.

Quick Sort Algorithm

Let the array of number be

Initially 1=0, j = 12, V = a[]] {i.e. V =30}

iis settol+ 1 and j is set ton - 1 as shown below

= = .tﬁ e i =|r_ . — pre——
- f'-. — - ‘!.. ',",, ?.E SR M-}‘W':i—: :' r “4-'4—
X § 3 & ;.~;~;- r~£>"lE.\'. 14 11
.,-'?- " ‘ <= e e

Now i1 moves right, while a[i] < 30. Hence i does not move
forther to right as a[1] > 30.

Then, j moves left, while a[j] > 30.

o] aslia] s] zo el s e[e [l

interchange

At this point afi] and a[j] are intercha_nged and the movement
of i and j resumes.

0 1 2 3 4 5 s
eaf2e]1o0f15[20]aa] 5 [18} & {11]13]s5]08)

=5 =10

i moves right to a[5] as 34 > 30. j moves left to af 10] as
13 < 30. Once again a[i] and afj] are swapped.

0o 1 2 3 4 5 6 7 & 9 1w 11 12
- j=9
————- i=10
.. - F I 3 -
ow, i moves to a[10] as 3 > 30 and j moves to a[9] as 11 <30.
e L
i the LSS & ﬁ gvu the Jocat °on0fﬁlﬁ plvo\t
o <11t T= 0] is interchanged with afi] to

left partition

Pivot

Please note that all element afi] with | <i < j are less than 39

| and all elements a[j] with u 2 1> j are greater than 30,

Here are sixtesn integers : 22, 36, 6. 7, 8, 26, 45, 75, 13, 31,62, 27, 76, 33, 16, 62, 49, Sort them using quick sort.
Solution :

o_ < I T T TS TS TS TR
e2]sal & B 0 CE B O B RO I B
: |

is]silez]z7]7a]5a]0s [e2] 47

ERE D N D O e ettt

27 | ﬁi 33 | 31

level 4

lavel 6

Quick Sort Algorithm

jefomark-and Nnahimears
will convaergoe on st ot

faftrmarx - — srhitmark

26«54 move 1o rignt
9353>>549 sfop

fummers rignuTnark

OwW cormtimouse moving leftmark arsg rigtmasrik

T ro5a sIop
A48 <S54 =10op

exchange 77 ana 44

T IS4 s1op
ST<Sa stop
vightmark<faftmark
sl podnt tound
“axchange S5E8 anct 531

Quick Sort Algorlthm

immitial array

chowose privol

Aarrangsme valees

i remnnernt

Aimcremnment

i remnvent.
OSSO

ERRCr W el vl o
Fimnal peoe-=sitic»En

I

=l

= - = et
M

= - - T
M

= <3 1 nt
M

= - 1 nt

®

= <4 1 =

»

= - 1 =

A

= <3 1 =

Quick Sort Algorlthm

Step 1
Determine pivot

Step 2
Start pointers at left and right

Step =
Since A4 < 5, shift lsft pointer

StTtep 4
Since 2 <= S, shift jleft pointer
Since &6 > 5, stop

Step S
Since 9 =S5, shift right pointer
Sinces 3 < stop

\

Step &
Swap values at pointers

STep 7
Move pointers one mor= step

Step B

Since S == S,

move pointers one more step
Stop

| =

[

| = |

Izlslsl

[S— [—
0

I2I6|5|

Po—

=

[~ 1l=1=1=1-]

L-8
I“lzlals J
| &] = > |
-] > >]
=1 =

Quick Sort Algorithm

'3 4 |1 |5 |9 | 2|6 |5 |4
*. aclecct and hide pivot
3 1 4 | 1 o 0 2 i 0 4
partition
3 1 2 1 o 0 4 i o 4
. ————— . reatorc pivot
3 1 2 1 4 0 4 b o o
F r
3 [] 21 9 [4]6 |5 B
>< # aclect and hide pivot
3 1 2 1 D 4 i o o
>< partition
1 3 2 1 0 4 i o o
>< X recatore pivot
1 1 2 3 o 4 o 0 i
b5 G L itd
1 2 5 o 4 0 i
¥ ¥ ¥
1 1 2 3 4 o 4 0 0 i

>< >< astraight inacrtion sort

Merge Sort Algorithm

* Merge sort is a sorting technique based on
divide and conquer technique. With Average
case and worst-case time complexity being

O(n log n), it is one of the most respected
algorithms.

* Merge sort first divides the array into equal
halves and then combines them in a sorted
mannetr.

Merge Sort

The most common algorithm used in external

sorting is the merge sort

Merging is the process of combining two or more

sorted files into the third sorted file
We can use a technique of merging two sorted lists

Divide and conqueris a general algorithm design

paradigm that is used for mergesort

39

rirne | lecein~n CLL Ky DYr A\ /archa DA+l N\vfard | Ilnnrarcihy Drace A DON1 9D

Merge Sort

Time Complexity T(n) = O(n logn)

90

How merge sort works

* To understand merge sort, we take
unsorted array as depicted below - q

(14 [3a |27 | 10 |[s |[19 || 42 || 44 |

* We know that merge sort first divides the
whole array iteratively into equal halves
unless the atomic values are achieved. We see
here that an array of 8 items is divided into

two arrays of size 4.

14| [[0] [[s][10][s2][]

* This does not change the sequence of
appearance of items in the original. Now we
divide these two arrays into halves.

(]] [z]e])] []«)

* We further divide these arrays and we achieve
atomic value which can no more be divided.

_]\27‘ 10) 35] 19} ‘42‘ Iil

* Now, we combine them in exactly same
manner they were broken down.

* We first compare the element for each list and
then combine them into another list in sorted
manner. We see that 14 and 33 are in sorted
positions. We compare 27 and 10 and in the
target list of 2 values we put 10 first, followed
by 27. We change the order 19 and 35. 42 and
44 are placed sequentially.

|' 14 ||33H “ 10 l\ 27] | 19]\35| | 42 \\|44|

* In next iteration of combining phase, we
compare lists of two data values, and merge
them into a list of four data values placing all
in sorted order.

0][14][ss [z || [10 [[ss][2]]

* After final merging, the list should look like
this —

o][0z (=)=][]|«

Algorithm of merge sort

* Merge sort keeps on dividing the list into equal
halves until it can no more be divided. By
definition, if it is only one element in the list, it
is sorted. Then merge sort combines smaller
sorted lists keeping the new list sorted too.

— Step 1 - divide the list recursively into two halves
until it can no more be divided.

— Step 2 - if it is only one element in the list it is
already sorted, return.

— Step 3 — merge the smaller lists into new list in
sorted order.

5 4

6

S

11

Initial array

Split

3

Nl

-

™

o))

N
)

11, 24
Merg :

Merge

5 6,9, 11,24

2,3

|2411926543|
|6543|

Original data :

After pass |

After pass 2

After pass 3

After pass 4

6 12 84 56

12 56 56 84

2 56 56 84

-13

28 0 -13 47

-13 0 28 47

PO U———

T~/

~13 0 12 28 47 56 56 84

-2 0 12 12 28 31 47 56 56 8 94

9 31 12 -2

~2 12

L

-2 12 31 %

Consider the following set of numbers, sort them usi
iterative merge sort. Show all passes

20 24 48 37 12 92 86 07

Initisl vaive 20 24 48 37 12 92 8 07
Pass 1 20 24 37 48 12 92 07 86
Pass 2 20 24 37 48 07 12 86 82

N

Pass 3 l 07 12 20 24 37 48 86 92 I

;;mmitdl‘owlhg list of numbers using merge sort. Show resuit stepwise :
50, 10, = 10, 40, 15, 25, 20, 35, 30

— "'
-

Shell Sort

* Shell sort is a highly efficient sorting algorithm
and is based on insertion sort algorithm. This
algorithm avoids large shifts as in case of
insertion sort if smaller value is very far right and
have to move to far left.

* This algorithm uses insertion sort on widely
spread elements first to sort them and then sorts
the less widely spaced elements. This spacing is
termed as interval. This interval is calculated
based on Knuth's formula as -

e h=h*3+1

where — h is interval with initial value 1

This algorithm is quite efficient for medium
sized data sets as its average and worst case
complexity are of O(n"2) where n are no. of
items.

How shell sort works

We take the below example to have an idea, how
shell sort works?

We take the same array we have used in our
previous examples. {35,33,42,10,14,19,27,44}

For our example and ease of understanding we
take the interval of 4.

And make a virtual sublist of all values located at
the interval of 4 positions. Here these values are

{35, 144, {33, 19/, {42, 27} and {10, 14}

|[as]‘ ag][42 '”'10][14]|:19 4][27][“]

-—_— - — — —

B2 (5]
= ED

o= | E2

o] =3

We compare values in each sub-list and swap them (if necessary) in
the original array. After this step, new array should look like this —

(o)oe) e) o)

Then we take interval of 2 and this gap generates two sublists - {14, 27,
35,

471 f10 10 22 A

|| 22 J[== [0 [=s][==][4=][<= |

‘14

=] | [==] (=] [e=]

————

| 1o | | 10 | | =a | | aa |

We compare and swap the values, if required, in the original array. After
this step, this array should look like this -

(18][0][22][s0 | =5 |[3=][o=][==

And finally, we sort the rest of the array using interval of value 1.
Shell sort uses insertion sort to sort the array. The step by step
depiction is shown below -

o r1o L'!‘JETS Jrz?

(G2l xe][==][1o][==
[1‘][19JL27]L10

[ss](==][==][==]
[Z=][x= J[=][s |[== |[==][2=][== |
[

s |[=0][== [[== |

[s=][as J[== [0][s |[==][== [== ||
(22][x2 |[so|[2z][=s |[o= |[a=][== |

(2= |[xo |[s |[== |[=5 |[3= |[2= [== |
[Ge)[m=)(m= (== (3=][==][==][==]
(Ge)(F= =)= === ===]
(se J[aa)[xs][== (== (==][== |[==]

] [(=1==ll==1[=]

Shell sort Algorithm

We shall now see the algorithm for shell sort.
Step 1 - Initialize the value of h

Step 2 - Divide the list into smaller sub-list of
equal interval h

Step 3 - Sort these sub-lists using
Insertion sort

Step 4 - Repeat until complete list is sorted

(5 1 9 8 2 4 6 9) asng sheal sorT

Solution -
s &k s * - - - - - o
o e T e \
| — o - - ‘ N . Y
A rems Bas ceo 5 » - a ' - "

oy Wi & * - - ‘ -

| My Betose 2 . ‘ . "l e 2 ‘

—_—

L theee aee 3 groops, cach groep hes & chesenss.
Eleomoents of a group are sorted using insertion sort.

-4 b) I = -3 l <« 0 ' -

o 7T NN NS NN N N

Arrey Betore o 1 o - @ e < ©
there is only one group, group has 8 cloments.
cloments Oof the group are sorted using Insesrtion Ssort.
Axray after 1 2 4 S 6 8 9 ©

= s 14 3 So. 11 20

Second pass © (Step 22)
| o | =2 =

; :'11
u
i

) 4 ¥
B 4

=
I s 1a |3 9/|\f|‘1\20

cw ' - . 14 11 20

10 elements, sorted using

4 s 8 9 11 14 20

Bucket Sort

For example, suppose that we are sorting elements
from the set of integers in the interval [o, m — 1]. The
bucket sort uses m buckets or counters

The ith counter/bucket keeps track of the number of
occurrences of the ith element of the list

® o 11

Nata Ct+riirtirirace | lecina CLL Ihw DN \/arclhha DA+l N\vfard | Ilnnrarcihy Drace A DON1 9D

Bucket Sort

3[1(4f[1(B6|0|[2[6]5]4]|data
0| 2 1|2[2|1]|0|0]|1|counts
01 5 6 7 8 0

Wl

B [b3 | e

b=

—

=13

'

| 9 ‘ data

Bucket Sort

Sort the following elements in ascending order using ducke! mm 9" pass

sort. Show all passes :

121, 235, 58, 873, 327, 179,

Solution :

Numbers are being sorted using radix sort Radix sort 18

ge.ncralizalion of bucket sort
Buckets after 1" pass

38
238

-

121 9

178

'r01'¢‘

i

Fig. Ex. 8.7.2(a)
Merged list : 121973 235 55 327 178

327 178
Buoket 121235 55 973 B
ool oo B e e
ol1]12|3|4|5|8|7|8]|3S8
Fig. Ex. 8.7.2(b)
Merged list : 121 327235 55 973 178
Buckets after 3" pass
178
sucket | 55 | 121|235 | 827 973
Number 1| 1
o|1|2|3)4 5|67]|8]|38
Fig. Ex. 8.7.2(c)

Merged list : 55 121 178 235 327 973

Radix Sort

Radix Sort is generalization of Bucket Sort

To sort Decimal Numbers radix/base will be used

as 10. so we need 10 buckets.
Buckets are numbered as 0,1,2,3,...,9
Sorting is Done in the passes

Number of Passes required for sorting is number

of digits in the largest number in the list.

Radix Sort

Radix sort is a generalization of bucket sorting

NG

% Radix sort works in threesteps:

Distribute all elements into m buckets
Here m is a suitable integer, for example, to sort

decimal numbers with radix 1o
We take 10 buckets numbered as o, 1, 2, ..., 9

For sorting strings, we may need 26 buckets, and
SO on

Sort each bucket individually
Finally, combine all buckets

Nata Ct+riirtirirace | lecina CLL Ihw DN \/arclhha DA+l N\vfard | Ilnnrarcihy Drace A DON1 9D

EXx.

Range Passes

0 to 99 2 Passes
0 to 999 3 Passes
0 to 9999 4 Passes

e In First Pass number sorted based on Least
Significant Digit and number will be kept in same
bucket.

 In 27 Pass, Numbers are sorted on second least
significant bit and process continues.

» At the end of every pass, numbers in buckets are
merged to produce common list. .

Consider the following 9 numbers:
493 812 715 710 195 457 582 340 385
We should start sorting by comparing and ordering the one's digits:

Digit| Sublist _

340710

812 582
493

0

1

2

3

4

3 715195 385
0

7 437

8

9

Notice that the numbers were added onto the list in the order that they were found, which is why the
numbers appear to be unsorted in each of the sublists above. Now, we gather the sublists (in order from
the 0 sublist to the 9 sublist) into the main list again:

340 710812 5824935 715 195 385 437

Now, the sublists are created again, this time based on the ten's digit:

710812 715

437
340

82 385
493 195

RDQZI‘H-JCT‘-LHLLUMI—‘I:IE

Now the sublists are gathered in order from 0 to 9:
710 812 715 437 340 582 385 493 195

Finally, the sublists are created according to the hundred’s digit:

195

340 385
437 493
582

710 715
812

kﬂﬂﬁﬂﬂ‘-Lﬂ-ﬂ-LﬂMl—‘GE

At last, the list is gathered up again:

195 340 385 437 493 582 710 715 817

RADIX SORT EXAMPLE

I 0 5 99 105 55 100 135 141 137 200 199

|
I | 199
| | ,
| |
| [77] L] |
| e~
o " u |

‘Buckets after 2™ pass

100
5
200 L g 199
100 10 135 141 55 Q9
0 1 2 3 B 5 6 7 s 9
merged list = 100 200 5 105 10 135 137 141 S5 99 199
Buckets after third pass
199
141
99 137
55 135
10 105
5 100 200
O 1 3 B 5 6 7 8 9
Merged list = 5 10 55 99 100 105 135 127 141 129G 200

Sort the following numbers in ascending order using radix
sort

14, 1, 66, 74, 22, 36, 41, 59, 64, 54
Buckets after 1* pass

Buckets after 2™ |

59]
41 | |54 ‘
=k %
:
8

Merged list = 4
st= | ‘
4 22 36 41 4 59
_ ¥ o4
4 4 66 n

56 12 84 56 28 0 —13 47 94 31 12 -2

Subtracting — 13 from every number, we get, .|
69 25 97 69 41 13 0 60 107 44 25 11 : |

Buckets after 1™ pass (sorting on least significant d ‘? t)

N)
'
5

60 11 23 107
0 a1 13 44 25 %
O 1 - 3 4 s 6 7 8

Merged list : 0 60 41 11 13 44 25 25 97 107 69 69
Buckets after 2”° pass

107 13 25 44
O 11 §} | 25 | 41

Radix Sort is very simple, and a computer can do it fast. When it is
programmed properly, Radix Sort is in fact one of the fastest
sorting algorithms for numbers or strings of letters.

Average case and Worst case Complexity - O(n)

Disadvantages

Still, there are some tradeoffs for Radix Sort that can make it less
preferable than other sorts.

The speed of Radix Sort largely depends on the inner basic
operations, and if the operations are not efficient enough, Radix
Sort can be slower than some other algorithms such as Quick Sort
and Merge Sort.

In the example above, the numbers were all of equal length, but
many times, this is not the case. If the numbers are not of the same
length, then a test is needed to check for additional digits that need
sorting. This can be one of the slowest parts of Radix Sort, and it is
one of the hardest to make efficient.

Radix Sort can also take up more space than other sorting
algorithms, since in addition to the array that will be sorted, you
need to have a sublist for each of the possible digits or letters.

HEAP SORT

Heap sort is one of the fastest sorting algorithms, which

achieves the speed as that of quick sort and merge sort

The advantages of heap sort are as follows: it does not use

recursion, and it is efficient for any data order

It achieves the worst-case bounds better than those of

quick sort

And for the list, it is better than merge sort since it needs
only a small and constant amount of space apart from the

list being sorted

Heap Sort

The steps for building heap sort are as follows:
Build the heap tree

Start delete heap operation storing each deleted

element at the end of the heaparray

Nata Ct+riirtirirace | lecina CLL Ihw DN \/arclhha DA+l N\vfard | Ilnnrarcihy Drace A DON1 9D

0‘0

Heap Sort

ALGORITHM
1. Build a heap tree with a given set of data

“* (a) Delete root node fromheap

“* (b) Rebuild the heap afterdeletion
“* (c) Place the deleted node in the output

Continue with step (2) until the heap tree is
empty

inttiroce llecein~a COLL ey D A\ /archha DAt N\vfard | Ilnnrarcihy Drace A DON1 9D

Analysis of Heap Sort

The time complexity is stated as follows:

N/

“* Best case O(nlogn)

N/

“* Average case O(nlogn)

Create a max heap with following elements :
51,9,2, 11,50,6,100,7
Solution :
Let us assume that heap is represented using an array

heap(12)

01234567891011 .
S : A heap with
Iniially s 0 sloments
no‘ofeiemants
0123465 Insert 11

Insert 8 R

No.upadiust() required heap (2}¢=heao (22

MR R F3 0 M] L e —————

Insert 50O

upad|ust() reguired

; _
eEs i T2]s]

- ——

=N K3

T) . A -
ZTISOIS 111 11 2) 1

2 3 4 5 & 7 8 9
ogsojtiisia2fels) 1§17

e~

. —— -

8.11.3(G) Heap Creation - A Better Approach

Suppose that n elements are stored in an array from index |
to n. These elements represent a complete binary tree. A tree, thus
represented may not satisfy the heap property.

Element from
End of e

alements

O Step2: Tree rooted at node no. 3 is converted o a heap HEEESE
Sowiadiusto):

a " "&uﬁ" Jm‘mﬁ

'l’ree rooted at node no. 41
\c] 1S converted to
a heap th
] b p through

Step 4 1 Tree rooted at node no. 1 is converred to u heap through
downadjust(). .

Now. a2 hesp

n

@

SWEP 2 - Lreanion of heap [using a better technique] | Down-adjusting nodes 3 and 2, we get

Criven dats represen the binary tree -

The dbove binary tree cun be converted into & heap by down-
adjusting nodes 6,5, 4,3 2. 1. Down

we get

-adjusting nodes 6, § and 4,

Step 2 : Sorting

77, 88,90, 99

66. 77, 88,90, 29

—_—

60. 66, 77. 88.90, 99

—

55, 60, 66. 77. 88,
90, 99

40, 44, 55. 60, 66,
77, 88, 90, 99

33, 40, 44, 55, 60,
66, 77, 88, 90, 99

22, 33,40, 44, 55,

pre 60, 66, 77, 88, 90, 99
@ ®

an= — 11,22, 33, 44, 55,
[| 60, 66, 77. 88.90. 99 |

o —

- Comparisoin of sorting

M ———— - I — v e FEVESE X &=V P
- . a wmn == - O =

i Best<case | Worst-case - Avyerage-case

Bubble sort O(nz) O(n") O(n’) 1]
‘ Selection sort | O nz) | O{_n:) Oin’)
= L _ . il AL R —
q 2
Insertion sort | O(n) O(n") O(n)
’ Quick sort O(n log n) | O n) O(n log n)
_ ' | - —_— | —]

Merge sort | O(n logn) { O(nlog n) Ofn tog n)

|
| -l
| Radix sort Of(n) O(n) " O(n)

Comparisoin of sorting

11, COMPARIDSUN UF SURTINGALGURITHM IN TABULAK FUKM

Sort

Time Complexity

Advantages & disadvantages

Insertion Sort

O(n)

The advantage of msertion sort 18 its simplicity. It 1s also good
performance for smallest array. The disadvantage of msertion sort 1S
that it 1s not useful for large elements array.

Selection Sort

O(n™2)

The advantage of selection sort is that it performs well on small
array.

The disadvantage of selection 1s that it is poor efficiency for large
clements array.

Bubble Sort

O(n™2)

The advantage of bubble sort is that it is easily implemented. In
bubble sort, the elements are swapped without additional temporary
storage, SO space requirement 1 minimuil.

The disadvantage of bubble sort is same as a selection sort.

Quick Sort

O(n log n)

The advantage of Quick sort is that it 18 used for small elements of
array as well as large elements of array. Disadvantage of Quick sort
18 that the worst case of quick sort 1s same as a bubble sort or
selection sort.

Comparisoin of sorting

BASIS FOR
COMPARISON

Bl

Bewt egg= fimie

COTFIOEEXI Y

Efcisncy

=t=hile

et b

BUBBLE SORT

Adracent l=Mment
s camparsd and
o Eopad

=)

Insfcient

SELECTION SORT

Latgestk elament - s2lected mntd
svapped with the Jast eflement. (M case

o a=scending order).

Qin*)

Iroorowed = oenoy 25 Coparsn oo

I rsles 5orr
rata
=alertigr

Fastas compared (o) bubbis sor

COMPARISON OF ALL
SORTING METHODS

Sorfing | Techniqne in | Bestcase | Worstcase | Memory [Pros Cons
mefhod byief requirement | stable
Bubble [Repeatedly | O(r) ofir' No extra space | Yes [L. A simple | Highly
sort steppitig throngh needed and easy | wefficient for
the List to be niethod large data
Somd'. 2. Efficient
companng-gach
T for small
pair of adjacet lisks > 100
iteins and |
swapping them
if they are in the
wrong order
t t t 1 1 f
[[

Sorting

method

4

Technigne
byief

Best case

Worst case

Memory

requirement

38

Cons

Selection
sort

Finds the
(e value
i the st and
then swaps 1t
with the value in
the first
posttion, repeats
these steps for
(he remainler of
the hst {starting
at the second
pasition and
advancmg eacly
fime)

Olr')

O’}

No extra space
fieeded

I
Recomuend
ed for small
files

). Good for
pattially
sorted data

nefficient for

large lists

T

Sorting

method

msertion
SOt

Techniqne
byief

Every repetition
of msertion sort
FEIOYEs an
elemeznt from
the mput data.
inserts it into the
conect position
i the already
sorted list until
1o mput
glements
remam, The
chotce of which
element (o
remove from the

nput is arbitrary

Best case

Ofn)

Worst case

On’)

Memory

requirement

No exira space
needed

stable

Yes

Pros

1. Relatively
smiple and
Ay 0
implement

2. Good for
almost
sorted data

Cons

Inefficient for
large lists

Sorfing

method

Technigne
byief

Best case

Worst case

Memory
requirement

Pros

Cons

Quick
sort

Picks an
element, called a
pivot, from the
list.

Reorders the list
50 that all
elements with
values less. than
the pivot come
before the pivot,
whereas all
elements with
values greater
than the pivor
ceme after
{equal values
can ‘go either
way). Affer tlus
partinoning, the
pivor is m its
final position.
This is called
the partiion
operation

Recursively

sorts the sub-list
of the lesser
elaments and the
sub-list of the
greater elements

O(nlogsn)

Q1)

No extra space:
n=eded

1. Extremely
fast

2. Inherently
recrursive

Very complex
algorithm

Sorting | Techniqne i | Bestcase | Worstcase | Memory Is Pros Cons

mettiod bief requirement | stable
s —
Shell {1t 0" 0(nlogﬁ:’) Noextraspace [No [1. Iis faster | Sloswer for

Sort genralization of ngeded thana quick | sufficiently big

mseftien sort. s0ft Tor small | arrays

which exploits amays

the fact that

¥ 2, 1ts speed

sertion sort

_ ind

iy stumplicty

efticiently on G

| . makes 1t a

i that 1§ i i

alrgady almost m Lm“tiz:'e

sorted. I W

MIPHOVES o1

settion sort by

allowing the

| comparison and |

5

Sorting | Techniqgne i | Bestcase | Worst case
oo bief requirement
h—ﬁ—d—*—h—h—i—ﬁ—-ﬂ
Radx | Numbersaee: | O(n) Q) Extra space
st placed af proper progortional fo
location by i1 needed
oA progessing
?ggﬁcn indivadual digats
i ad bﬁ
companng
dsvidual digts
that share the
same significant
position

Memory

Is

stable

Yes

Pros

1, Radix sort
1§ yery
simple. and
fast

2. In-Place,
Recursive
and oug of
the fastest
sarting
algorithun
for numbers
o strings of
lefiers

Cons

Radix sort can
also take mor
space than ot
s0rtme

algorithums since

- addition o
the amay that
will b sorted,

there nesds 1o

be-n sub-list for
each of the
possible digtts

Qo Jetters

Sorting | Techniqne in | Bestcase | Worstcase | Memory Pros Cons
byief requirement | stable
mefhod
Merge Conceptually, a | O(nlogn) O(nlogain) EXira space Yes I.Goodfor | 1. I requires
501 merge son proportional to external file | twice the
works as i 1s needad sorting memory of the
ol Ga b Eggu e of St(l)x]:
If the list 1s of applied to | b
= second amay
lensth Oor L. files of any : ‘
X s . g used o store the
then it 15 already size

sorred.
Otherwise, the

algorithm

divides the
unsorted list mnto
two sub-lists of

about half the

size

Thet. it sorts
each sub-list
recwsively by
reapplying the
merge sort and
then merges the
fwo sub-lists
back o one
sorted list

sorted list,

2. It is recursive,
which can make
it a bad choice
for apphcations
that yn on
machines with
limited memory

SOFIE | LeChaliqne I (best case | Yyorstcase | Memory 15 rros vOons
byief requirement | stable

method

Heap sort | Heap sort begins | OOtogan) O(nlogan) No extra space | No 1. Do #ot wark
by building a neaded Advantageou | well for most
lieap out of the s as it does large tables

data set, and
then removing
the largest item
and placms 1t at
the end of the
partially sorted
armay. After
removing the
largest 1tem, 1t
reconstructs the
heap. removes
the largest
rSmaiing iem.
and places it in
the next open
position from
the end of the
partially sorted
array. This is
repeated untit
there ars no
ttems left w the
heap and the
sorted array is
full

not 1se
recursion
and that heap
sart works
just as fast
for any data
order. That
18, there 15
basically no
worst-case
SCENaro

2. Heaps
work well
for small
tables and
the tables
where
changes are
infreguent

#include <stdio.h>

int main()

{

int arr{100], n, i, j, temp;
printf("Enter number of elements you y
scanf("%d", &n); |

Pﬂnmmr%ﬂdmts‘vd;
for(i 0‘;<n,t++) __—__

vfor(i &?G'ﬂ*@ gi

. & e [lnunsomuamayﬁ
=03j<n-iij++] | the first position
?‘b :?. T 1[elemenhsgmater

 [Eoter S elemnts : 315577 15 4

#Finclude<st
nt ma
- - It elemeny IS less
n any
Previous slemen;
: i
2l ar l

then element is
inserted at

Position of
Previous element
M - and the position
=temp; of that previous
Rt Enter number of slomeanie ot want to be sort : ") ‘ element shifted
PER T\ AL BRINDE SRRATE R one position to

ight
ng -
W . ‘
My /9 72 _py_ 3 vl 7
{ | V‘,' -'0‘} ~.’J_,“'l;‘:_ ,/::. - P ‘{.\ = »
3 -] 4 1 e : v'_ il " 1
| HEI Y00 elemed
Xy 1 e
)
A S 3]_:. L '|:
9.5 = =
¥ : 5]
W'

Prints sorted

BUCKET SORT

=1 W&qﬂmnmlma.x
»r ,.u i Enter no. of elements "),
T mn &“)’
R .;_'.'. alise the array frequency %/
for(i=051 < 1000:i + +)
- Brequencyli}=0;
(" Enter the dawa to be sorted :");

‘ TR
iﬁfmmmw?@ >0y .
-] whﬁququemy{ﬁ}ﬁ}

—".-':;t'-:“-""' LA e

: " . 5 :) ﬁequonby t'l"] -3

Thanks!!!!

Prof. ANAND GHARU
ASSISTANT PROFESSOR
Blog : anandgharu.wordpress.com

