[Total nos of questions : 8]

ROLL No. :		
	0 D	

[Total No. of Pages : 2]

T.E. (Computer Engineering)

THEORY OF COMPUTATION

(2015 Pattern) (Semester -I) (5th Sem.)

Instructions to the candidates:

- *Time* : 2 ¹/₂ *Hour*] [Max. Marks : 70] Answer four questions [(Q.1 or Q.2), (Q.3 or Q.4), (Q.5 or Q.6), Q.7 or Q.8)]. 1) Neat diagrams must be drawn wherever necessary. 2) Assume Suitable data if necessary. 3) (01) a) Design a DFA which accepts a ternary number divisible by 4 [6] b) Construct DFA for language defined by $\{a, b\}$ where [6] S = { strings containing only a's } S = { strings containing only b's } S = { strings containing only a's or b's } c) Define the following term with example. [3] 3. Regular expression 2. String 1. Alphabets d) Explain application of Regular Expression in text search & replace [5] (*O2*) a) Write short notes on CNF and GNF. [6] b) Eliminate the useless symbols in the grammar below [6] $S \rightarrow Aa \mid Bb$ $A \rightarrow Aa \mid a$ $B \rightarrow Bb$ $D \rightarrow ab \mid Ea$ $E \rightarrow Ac \mid d$ c) Construct a DFA accepting the following language over the alphabets { a, b } i) Set of all string that begin with the substring ab [8] ii) Set of all strings with at most two consecutive b's Q3) a) Define TM. And Explain recursively enumerable set [4] b) Obtain TM to accept language L = { $0^n 1^n | n > = 1$ } [6]
 - c) Construct TM for $-L = \{$ All string with equal nos of a's and b's [8]

Q^2	4) a) 1 b) c)	Write a short notes on) Unsolvable problem 2) Application Turing Machine Design TM to add unary number Design a TM to accept language	[4] [6]	
	0)	L = { w / w $(0 + 1)^*$ } containing the substring 001.	[8]	
Q	5) a) S -> A ->	Convert following CFG to PDA > aSb A > bSa S E	[4]	
 b) Construct PDA that accepts all palindrome string over {a, b}. Specify simulation for string 'aba' [6] 			[6]	
	c)	Define PDA. What are different types of PDA?	[6]	
		OR		
Q6	a)	Differntiate between FA and PDA.	[4]	
	b)	Construct post Machine that accepts the following language.	[6]	
	c)	$L = \left\{ a^{n} b^{n} a^{n} n \ge 0 \right\}$ Design a PDA for the following Language	[6]	
s		$L_{a b} n \ge 0$ }s		
0 7)	a)	Difference between P and NP class	[04]	
~ /	b)	What is kruskal algo. Write algo using Turing machine	[6]	
	c)	Explain polynomial time reduction with example.	[6]	
OR				
Q8)	a)	Prove that satisfiability problem is NP-complete.	[04]	
	b)	Explain Node vertex problem with example	[6]	
	c)	Explain what do you meant by NP-problem? Justify Travelling		
		saleman problem is NP Problem.	[6]	
		\bullet \bullet \bullet		