
“MACRO PROCESSOR AND

COMPILER ”
Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

02 AUG 2021

.

CLASS : TE COMPUTER 2019

SUBJECT : SPOS (SEM-I)

UNIT : II

SYLLABUS :-

Introduction, Features of a Macro facility: Macro

instruction arguments, Conditional Macro expansion,

Macro calls within Macros, Macro instructions,

Defining Macro, Design of two pass Macro

processor, Concept of single pass Macro processor.

Introduction to Compilers: Phases of Compiler with

one example, Comparison of Compiler and

Interpreter.

CONTENTS :-

1. Introduction, Features of a Macro facility: Macro

instruction arguments,

2. Conditional Macro expansion,

3. Macro calls within Macros

4. Macro instructions, Defining Macro

5. Macro Definition (Macro Processor)

6. Compare Macro & Subroutines

7. Concept of single pass Macro processor

8. Introduction to Compilers: Phases of Compiler with

one example, Comparison of Compiler and

Interpreter

MACRO DEFINITION

Writing a macro is another way of ensuring modular programming

in assembly language.

•A macro is a sequence of instructions, assigned by a name and

could be used anywhere in the program.

•In NASM, macros are defined

with %macro and %endmacro directives.

•The macro begins with the %macro directive and ends with the

%endmacro directive.

MACRO DEFINITION

The Syntax for macro definition −

%macro macro_name number_of_params

<macro body>

%endmacro

FEATURES OF MACROPROCESSOR

1. Macro represents a group of commonly used statements in the source

programming language.

2. Macro Processor replaces each macro instruction with the corresponding

group of source language statements. This is known as the expansion of

macros.

3. Using Macro instructions programmer can leave the mechanical details to

be handled by the macro processor.

4. Macro Processor designs are not directly related to the computer

architecture on which it runs.

5. Macro Processor involves definition, invocation, and expansion.

MACRO DEFINITION

• .

COMPARE MACRO & SUBROUTINE
Sr.

No
Macro Subroutine

1
Macro can be called only in the

program it is defined.

Subroutine can be called from other

programs also.

2 More space is required Less space is required

3 Execution speed is faster. Execution speed is slower

4 Macro Can not handle labels Subroutines can handle labels

5 Macro is executed by assembler Subroutine is executed by hardware

6 Code size increase Code size does not increase.

7 Simple to write and use Complex to write and understand

8

Macro name[parameter]

Mend

Subroutine name(parameter)

end

DEFINING MACRO

CALLING MACRO

MACRO EXPANSION

MACRO WITH KEYWORD

PARAMETER

MACRO WITH MIXED PARAMETER

NESTED MACRO CALL

NESTED MACRO DEFINITION

ADVANCED MACRO FACILITY

EXPANSION TIME VARIABLE

DESIGN OF MACROPROCESSOR

DATABASES USED IN PASS – I OF TWO

PASS MACRO PROCESSOR

DATABASES USED IN PASS – II OF TWO

PASS MACRO PROCESSOR

HANDLING OF NESTED MACRO CALL

HANDLING OF NESTED MACRO

DECLARATION

History of Compiler
• The “compiler” word was first used in the early 1950s

by Grace Murray Hopper

• The first compiler was build by John Backum and his

group between 1954 and 1957 at IBM

• COBOL was the first programming language which

was compiled on multiple platforms in 1960

• The study of the scanning and parsing issues were

pursued in the 1960s and 1970s to provide a complete

solution

Compiler

• Compiler is a translator which converts the high

level language into low level language.

• Benefits of writing a program in a high level

language :

• Increases productivity: It is very easy to write a

program in a high level language.

• Machine Independence: A program written in a

high level language is machine independent.

Features of Compiler

• Compilation speed.

• The correctness of machine code.

• The meaning of code should not change.

• Speed of machine code.

• Good error detection.

• Checking the code correctly according to

grammar.

Uses / Applications of Compiler

• Helps to make the code independent of the

platform.

• Makes the code free of syntax and semantic

errors.

• Generate executable files of code.

• Translates the code from one language to

another.

Steps in language processing system

COMPILERS

• “Compilation”

– Translation of a program written in a source

language into a semantically equivalent program

written in a target language

Input

Compiler

Error

messages

Source

Progra

m

Target

Program

Output
3

Phases of Compiler

ANALYSIS – SYNTHESIS
MODEL

5

8

3/17/2019 PROF. ANAND GHARU

Skeletal Source Program

Preprocessor

PHASES OF COMPILER

3/17/2019 PROF. ANAND GHARU

Linker

Assembler

Compiler

59

Example : https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Skeletal Source Program

Preprocessor

C FRONT END & BACK END OF
COMPILER

3/17/2019 PROF. ANAND GHARU

Linker

Assembler

Compiler

60

Example : https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Phases of Compiler

• Lexical Analysis :

1. It takes the high-level language source code as the input.

2. It scans the characters of source code from left to right.

Hence, the name scanner also.

3. It groups the characters into lexemes. Lexemes are a

group of characters which has some meaning.

4. Each lexeme corresponds to form a token.

5. It removes white spaces and comments.

6. It checks and removes the lexical errors. 3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Syntax Analysis :

1. ‘Parser’ is the other name for the syntax analyzer.

2. The output of the lexical analyzer is its input.

3. It checks for syntax errors in the source code.

4. It does this by constructing a parse tree of all the tokens.

5. For the syntax to be correct, the parse tree should be

according to the rules of source code grammar.

6. The grammar for such codes is context-free grammar.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Semantic Analysis :

1. It verifies the parse tree of the syntax analyzer.

2. It checks the validity of the code in terms of

programming language. Like, compatibility of data

types, declaration, and initialization of variables, etc.

3. It also produces a verified parse tree. Furthermore, we

also call this tree an annotated parse tree.

4. It also performs flow checking, type checking, etc.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Intermediate Code Generation :

1. It generates an intermediate code.

2. This code is neither in high-level language nor in machine

language. It is in an intermediate form.

3. It is converted to machine language but, the last two phases are

platform dependent.

4. The intermediate code is the same for all the compilers.

Further, we generate the machine code according to the

platform.

5. An example of an intermediate code is three address code. 3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Code Optimizer :

1. It optimizes the intermediate code.

2. Its function is to convert the code so that it executes faster

using fewer resources (CPU, memory).

3. It removes any useless lines of code and rearranges the code.

4. The meaning of the source code remains the same.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Code Generator :

1. Finally, it converts the optimized intermediate code

into the machine code.

2. This is the final stage of the compilation.

3. The machine code which is produced is relocatable.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Lexical Analysis :

Lexical analyzer phase is the first phase of compilation process. It takes source

code as input. It reads the source program one character at a time and converts it

into meaningful lexemes. Lexical analyzer represents these lexemes in the form

of tokens.

• Syntax Analysis :

Syntax analysis is the second phase of compilation process. It takes tokens as

input and generates a parse tree as output. In syntax analysis phase, the parser

checks that the expression made by the tokens is syntactically correct or not.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Semantic Analysis :

Semantic analysis is the third phase of compilation process. It checks whether

the parse tree follows the rules of language. Semantic analyzer keeps track of

identifiers, their types and expressions. The output of semantic analysis phase is

the annotated tree syntax.

• Intermediate Code Generation :

In the intermediate code generation, compiler generates the source code into the

intermediate code. Intermediate code is generated between the high-level

language and the machine language. The intermediate code should be generated

in such a way that you can easily translate it into the target machine code.

3/17/2019 PROF. ANAND GHARU

Phases of Compiler

• Code Optimization :

Code optimization is an optional phase. It is used to improve the intermediate

code so that the output of the program could run faster and take less space. It

removes the unnecessary lines of the code and arranges the sequence of

statements in order to speed up the program execution.

• Code Generation :

Code generation is the final stage of the compilation process. It takes the

optimized intermediate code as input and maps it to the target machine

language. Code generator translates the intermediate code into the machine code

of the specified computer.

3/17/2019 PROF. ANAND GHARU

3/17/2019

Example :

Types of Compiler
1. Cross Compilers

They produce an executable machine code for a platform but, this platform is

not the one on which the compiler is running.

2. Bootstrap Compilers

The process of writing a compiler (or Assembler) in the target programming

language which has to be compiled is known as "Bootstrapping“

3. Source to source/transcompiler

These compilers convert the source code of one programming language to

the source code of another programming language.

Types of Compiler
4. Incremental compiler :

Incremental Compiler is a compiler, which performs the recompilation of

only modified source rather than compiling the whole source program

Decompiler

Basically, it is not a compiler. It is just the reverse of the compiler. It

converts the machine code into high-level language.

ISSUES IN COMPILATION

3/17/2019 PROF. ANAND GHARU

Hierarchy of operations need to be maintained to
determine correct order of expression evaluation

Maintain data type integrity with automatic type

conversions

Handle user defined data types.

Develop appropriate storage mappings

7

3

ISSUES IN COMPILATION

3/17/2019 PROF. ANAND GHARU

Resolve occurrence of each variable name in a program i.e
construct separate symbol tables for different

namespaces.

Handle different control structures.

Perform optimization

74

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

3/17/2019 PROF. ANAND GHARU

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

3/17/2019 PROF. ANAND GHARU

Lexical analysis is the process of converting a sequence of

characters from source program into a sequence of tokens.

A program which performs lexical analysis is termed as a

lexical analyzer (lexer), tokenizer or scanner.

Lexical analysis consists of two stages of processing which

are as follows:

• Scanning

• Tokenization

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

3/17/2019 PROF. ANAND GHARU

Roles of the Lexical analyzer

Lexical analyzer performs below given tasks:

1. Helps to identify token into the symbol table

2. Removes white spaces and comments from the source program

3. Correlates error messages with the source program

4. Helps you to expands the macros if it is found in the source

program

5. Read input characters from the source program.

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

3/17/2019 PROF. ANAND GHARU

Lexical Analyser Parser

Scan Input program Perform syntax analysis

Identify Tokens Create an abstract representation of
the code

Insert tokens into Symbol Table Update symbol table entries

It generates lexical errors It generates a parse tree of the
source code

Lexical Analyzer vs. Parser

BASIC TERMINOLOGIES OF
LEXICAL ANALYSIS

3/17/2019 PROF. ANAND GHARU

4
0

 Major Terms for Lexical Analysis?
 TOKEN

 A classification for a common set of strings

 Examples Include <Identifier>, <number>, etc.

 PATTERN

 The rules which characterize the set of strings for

a token

 Recall File and OS Wildcards ([A-Z]*.*)

 LEXEME

 Actual sequence of characters that matches pattern

and is classified by a token

 Identifiers: x, count, name, etc…

BASIC TERMINOLOGIES OF
LEXICAL ANALYSIS

3/17/2019 PROF. ANAND GHARU

4
0

• “Interpretation”

– Performing the operations implied by the

source program

INTERPRTERS

3/17/2019 PROF. ANAND GHARU

Interpreter

Source

Program

Input

Output

Error Messages

8

1

Lexical
Analyzer

Parser
and rest of
front-end

Source
Program

Token,
tokenval

Symbol Table

Get next
token

Lexical error Syntax error
Semantic error

Intermediate
representation

Position of a Parser in the
Compiler Model

83

Position of a Parser in the
Compiler Model

84

The Role Of Parser

85

• A parser implements a C-F grammar

• The role of the parser is two fold:

1. To check syntax (= string recognizer)

– And to report syntax errors accurately

2. To invoke semantic actions

– For static semantics checking, e.g. type checking of
expressions, functions, etc.

– For syntax-directed translation of the source code to an
intermediate representation

The Role Of Parser

86

 1. It verifies the structure generated by the tokens based
on the grammar.
2. It constructs the parse tree.
3. It reports the errors.
4. It performs error recovery.

Issues :
 Parser cannot detect errors such as:
1. Variable re-declaration
2. Variable initialization before use
3. Data type mismatch for an operation.
The above issues are handled by Semantic Analysis phase.

The Role Of Parser

87

 Syntax error handling :
Programs can contain errors at many different levels. For
example :

1. Lexical, such as misspelling an identifier, keyword or

operator.

2. Syntactic, such as an arithmetic expression with

unbalanced parentheses.

3. Semantic, such as an operator applied to an

incompatible operand.

4. Logical, such as an infinitely recursive call.

The Role Of Parser

88

 Functions of error handler :

1. It should report the presence of errors clearly and

accurately.

2. It should recover from each error quickly enough to be

able to detect subsequent errors.

3. It should not significantly slow down the processing of

correct programs.

TYPES OF ERRORS

3/17/2019 PROF. ANAND GHARU

A parser should be able to detect and report any error in the

program. It is expected that when an error is encountered, the

parser should be able to handle it and carry on parsing the rest

of the input. Mostly it is expected from the parser to check for

errors but errors may be encountered at various stages of the

compilation process. A program may have the following

kinds of errors at various stages:

Lexical error : name of some identifier typed incorrectly

Syntactical error: missing semicolon or unbalanced

parenthesis

Semantical error : incompatible value assignment

Logical error: code not reachable, infinite loop

Compile time error.

4
4

TYPES OF ERRORS

3/17/2019 PROF. ANAND GHARU

4
4

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

