PVG’s College of Engineering & S. S. Dhamankar

Institute of Management, Nashik

206, Behind Reiance Petrol Pump, Dindorircad, Mhasru!/, Nashik-422004
Phone: 0253-6480000 / 36 /44 Toll Free Number: 18002665330

Website: htips://pvgcoenashik.org Email: admission@pvgcoenashik.org

Approved by AICTE, New Delhi, DTE, Mumbai and " -
Affiliated to Savitribai Phule Pune University, Pune. DTE Code: ENS330

“MACRO PROCESSOR AND

COMPILER”

Prepared By
Prof. Anand N. Gharu

(Assistant Professor)
PVGCOE Computer Dept.

CLASS : TECOMPUTER 2019

SUBJECT : SPOS (SEM-1) 02 AUG 2021
uNniT - v

Introduction, Features of a Macro facility: Macro
Instruction arguments, Conditional Macro expansion,
Macro calls within Macros, Macro Instructions,
Defining Macro, Design of two pass Macro

processor, Concept of single pass Macro processor.

Introduction to Compilers: Phases of Compiler with

one example, Comparison of Compiler and

Interpreter.

1. Introduction, Features of a Macro facility: Macro
Instruction arguments,

2. Conditional Macro expansion,

3. Macro calls within Macros

4. Macro Instructions, Defining Macro

5. Macro Definition (Macro Processor)

6. Compare Macro & Subroutines

/. Concept of single pass Macro processor

8. Introduction to Compilers: Phases of Compiler with
one example, Comparison of Compiler and
Interpreter

Writing a macro Is another way of ensuring modular programming
In assembly language.

*A macro Is a sequence of Instructions, assigned by a name and
could be used anywhere in the program.

*In NASM, macros are defined

with omacro and %eendmacro directives.

*The macro begins with the"%macro directive and ends with the

Ohendmacro directive

The Syntax for macro definition —

%macro macro_name number_of params

<macro body>

%endmacro

. Macro represents a group of commonly used statements In the source

programming language.

. Macro Processor replaces each macro instruction with the corresponding
group of source language statements. This Is known as the expansion of

Macros.

. Using Macro Instructions programmer can leave the mechanical details to

be handled by the macro processor.

. Macro Processor designs are not directly related to the computer

architecture on which 1t runs.

. Macro Processor involves definition, invocation, and expansion.

Macro allows a sequence of source language code to
ined once and then referred to by name each time it is
=rred. Each time this name occurs in a program, the sequence of
oes 1S substituted at that point,
A MAacro consists of ;
(1) Name of the macro
Set of parameters
Body of macro (Code)
Parameters in a macro are optional.

For example, let us consider a program segment given below:

' P ORAYA (YT am 1""A) IFNP
i 1he above program, the sequence

ADD AREG, A

| MACRO

3
'

YIILAQCT

D

aeiimiuion

FProgram with macro

S

> mMymacro

—

!

L L LUEL S S R A — Y Ve ¥ IR N o -\OID.:'D‘4

¥y
\/

s

e
-

-

]

[

'
~
>

—

)

-
s
)

’
]‘L‘..tlgl .-.Ji LR s S g L

TO €X]

O
[

BTN 3 99 40 B pn 44 D ST . S |

\.-7

L R N et L 1l B,

N
C £
£ T
" (')

) . »
v

N i1

s,.’. " o.a»i
4 v
L T

Y
! 4

"
o

0
Q

~
..

Macro

Macro can be called only in the
program it is defined.

More space Is required
Execution speed Is faster.
Macro Can not handle labels

Macro is executed by assembler

Code size Increase

Simple to write and use

Macro name[parameter]

Mend

Subroutine

Subroutine can be called from other
programs also.

L_ess space IS required
Execution speed is slower
Subroutines can handle labels

Subroutine Is executed by hardware

Code size does not Iincrease.

Complex to write and understand

Subroutine name(parameter)

end

Macros are typically defined at the start of a program.
macro definition consists of
(1) MACRO pseuu’o opcode
MACRO nam
Sequence of statements to be abbreviated

(4) MEND pseudo opcode terminating the macro defimtion

The structure of a macro is shown below :

Start of definttion

Macro name with parameters

A 0 O -\ -8 & - > - y e ol N T > 3
Seqguence of statements to be abbreviated — 3

|

.
FEnd of defimtion > MEND
The MACRO Pseudo opcode is the first line of the macro

definmition

The next line has macro name with a list of parameters.

< macro name > [< list of parameters>]|

macro INCR.

T he macro- ne s ' ARG indicates that
INCR.
here is one parameler to macro, called ARG.

- -

he parameter ARG does not have a default value. Such a

|

parameter IS also Known as positional parameter.

form the body of acro which will be used dunng macro
:x;h{x)-'-:it:s:i- uring iacro call, th value c positiona

parameic

A macro 18 called l‘\ w r!f‘ﬁ" the macro name with actual

parameters 1n an assembly program.
The macro call has the following syntax
< macro name > [< list of parameters >
For example,

INCR X

Will call the macro INCR with the actual parameter X.

A macrc call leads to macrp expansion

Each call to a macro 1s replaced by its body.

ing replacement, actual parameter 1s used in place of

formal parameter

During macro expansion, €ach statement forming the body of

the macro is picked up one by one sequentially.

Each statement instde the macro may have :

(1) An ordinary string, which s copied as it 1S during
expansion.

(2) The name of a formal parameter which 18 preceded by
the character "'&’

During macro cxpansion an ordinary string is retained

without any modification. Formal parameters (string starting

with &) is replaced by the actual parameter vaiue.

N 4l

MOVER USE REG, &EVARIABLE
ADD st REG, &KINCR BY

MOVEM SUSE REG. &EVARIABLE

MEND

Fig. 2.2.2 : A macro
ne of the macro is INCR

g ' "0 B3 D T S
;:‘(L ‘=8 5 !'n., SR

contains thre

LOonsider an asset

icro-call as ot

nbly

progran

INCR &V

ey A 13 {
~ ! » ' 1y
'; ,01 /\!-\r] ﬂ’.l’»‘
| b ». 2 .
12.3{' \t\ b,
!
' 28 AT
. "} i) 1
|
! r, Ty NV N A
\‘\ (\ _"'\, ', ~‘.E

| PRINT X

v with

&INCR B?

J
- A

macro

: An assembly program with macro

. an
..s.‘.‘. (1.\ .

DEOUTRIT

given In

The statement START 100 will he copied as 1t 1s.

The statement READ X will

™

the statement READ Y v

\y‘l Mot ' 0avn
PATAMCCTS are |

HFormal parameter
VARIABLE X

INCR BY Y
USE_REG AREG

L S N

There are three statements in the body of the macro. During
expansion of the macro, actual parameters will be used instead of

fortnal parameiers

o - ™

MOVER &USE REG, &VA . { expansio MOVER

)(
A0 ' , ADD =2
=

OV ERM SN =1 = - MOVEM T
- - 3 - -3
- 2L >

Remaining statements
PRINT X

STO

END

will be retained without any modification.

T'he output of macro IS an expanded p

2

ach call to Macro, exps md ed. ‘Ihe output is ;\ho vi in Fig.

START

READ
READ

—_
i 2

INCR

i% C\") naed %l

2.24 : Expanded code

A macro can have two types of parameters

Macro with Keyword
Farameaeters

(1) Positional parameters

(2) Keyword parameters }

Fig. C2.1 : Keyword parameters of macros
—> (1) Positional parameter
A positional parameter is written as & parameter name. For

examplie, 1n the statement
INCR EVARIABLE, SINCR_BY, SUSE REG

VARIABILE, INCR_BY AND USE REG are positional

pParamcicrs.

During macro expansion, actual values of parameters are
substituted on the basis their positions in the macro-call-statement.
Hor example, in the ma=cro call statement

INCER X, Y, AREG

will be assigned to the first formal

The value X at position |
parameter VARITIABLE.

The value Y at position 2 will be
formal parameter INCR_BY.

The value AREG at position 3 will be
arameter USE REG.

assigned to the second

assigned to the third

formmal

Fig. 2.2.5 shows macro INCR of Fig. 2.2.2 using keyword

;‘llr;HﬂCL(.‘ I'S. . - ‘ = L

") (2) K(‘)‘“'Ol‘d parameter | MACRO

INCR &VARIABLE = X,
’ &INCR_BY = Y.&USE_REG = AREG |

MOVER &USE REG, & VARIABLE
| ADD &USE_REG, &INCR BY
| MOVEM &USE REG, & VARIABLE
10 macro, a keyword parameter 1§ specified by LMEND

Fig. 2.2.5 : A macro with keyword parameters

heyword parameters are used for following purposes

(1) Default value can be assigned to the parameter

(2) Duning a ca
s name. 1t takes the following form
— VARIABLE is a keyword parameter with default value as X
< parameter name > = <parameter value> — INCR_BY is a keyword parameter with default value as Y
- USE_REG is a keyword parameter with default value as

ARFECG
TTn following macro calls are equivalent :

INCR Vv ARIAHI,.lz:A. INCR BY = B, ‘
USE REG = BREG l
| INCR INCR_BY = B. USE REG = BREG. |
' |

| VARIABLE =

INCR USE_REG = BREG, VARIABLE = A. INCR _BY =

I'he position of keyword parameter during a macro call is not
important.

It is not necessary to pass value of every keyword parameter.

It the value of a keyword parameter is not specified then its

default value is taken during expansion.

-

Expansion of the macro in Fig. 2.2.5 is shown under various

cases 1in Fie. 2.2 6

Macro call statement

INCR VARIABLE=A, INCR BY=B,

USE_REG = BREG

INCR INCR_BY=B, USE_REG=BREG,

VARIABLE = A

INCR VARIABLE = A

Fig. 2.2.6: Various cases of expansion

Expanded macro

MOVER
ADD
MOVEM
MOVER
ADD
MOVEM
MOVER
ADD
MOVEM
MOVER
ADD
MOVEM

BREG,A
BREG,B

BREG,A

BREG.A
BREG,B
BREG,A
AREG.A
AREG,Y
AREG,A
AREG,X
AREG,Y
AREG,X

A macro may be defined with both :

|

(1) Positional Parameters
(2) Keyword Parameters

in such cases, posituonal parameters should be written before

yword parameters.
Fig. 2.2.7 shows the definition of macro TINCR. It uses both

posiional and keyword parameters.

MACRO
INCR MVARIABLE &INCR BY.,

KLUSE REG = AREG,

MOVER USE REG &EVARIABLE
ADDD ZUSE RiEZG, &KINCR_BY
MOVEM K&KUSE REG, &EVARIABLE

MEND =i 5}

Fig 2.2.7 : A macro with mixed parameters

- e AL -

1The parameters VARIABIL.E and INCR_BY are positional
parameters while USE_REG 1s a keyword parameter.

A macro call

INCR X, Y, USE_REG =BREG
will assign X and Y to the positional parameters VARIABLE
and INCR_BY respectively. BREG will be used as a value of
the keyword parameter USE_REG.

A nested macro call 1s a macro call within a macro. There can
be several levels of nesting.
— A macro containing a macro call 1s Known as outer macro.

A called macro 1s Known as inner macro.

Expansion of nested macro calls follows the LIFO (last in

first out) rule.
For exampile, let us consider the program segment shown 1n

Fig. 2.3 1.

MACRO
COMPUTE ARG
MOVER AREG, £ARG
ADD AREG, = *1°
MOVEM ARG ARG
MEND
MACRO
COMPUTE] ARG, KARGZ, &£ARGS
COMPUTE MARG]
COMPUTE ZARG2
COMPUTE MARG3S
MEND

Fig. 2.3.1 : Nested macros

The definition of macro COMPUTE]1 contains three separate
calls to a previously defined macro COMPUTE. Such macros are
expanded on multiple levels. Expansion of COMPUTE] X, ¥, Z
is shown in Fig. 2.3.2.

Source line Expanded source Expanded source
(level 1) (level 2)

COMPUTE1 X, Y. Z—> [COMPUTE X > MOVER AREG, X
{ COMPUTE Y { ADD AREG,=1

ADD AREG, =1
MOVEM AREG.Y

&{ MOVER AREG,Z

COMPUTE Z MOVEM AREG, X
\ MOVER AREG.Y

\

ADD AREG, ='1’
MOVEM AREG, £

sa.qyFig. 2.3.2 : Expansion of compute X, Y, Z

2. 3.1 Nested Macro Definition

A macro can be defined inside the body of a macro. 'Thas

concept can be used for defining &2 sroup of simnilar Mmacros.

Inner maciIo comes into existence after a call to the outer
IMOacCToO.

ITnmner macro can be calied after it has CcCoOme 1nto exXistence.

A nested macro definition is shown i Faig. 2.3_5

NMACRO

PDEFINE &SUB
NMACRO

SESUB &Y

MOVER AREGG &Y
ADDID AREG, — 57
MOVEM ARG, &Y
NMEINDD

MEINIDD

COOunter Nested
MNMacro MNMiacro
IDEFEFFINNE SESTUB

Fig. 2.3.3 - Nested nmaacro defindtion
The Fig. 2.3.3 defines

=z o mactro IDDPDENFINE., which when called

with a&a parameter, defines a macro with the same name as the
paramcicr.

actzzzal

The user might call the macryo with the statement
DEFINE NESTED

T his will define &2 new tnacro NESTEID as shown below.

MACRO

NESTEID =Y
MOVER

AT AREG, =
MOV ENM AREG, &Y
NENIDD

Advanced macro facilities permit conditional reordering 01

the sequence of macro expansion. It allows conditional selection of

the machine instructions that appear in expansion of macro call.

Flow of control during macro expansion can be altered using:

(1) Conditional branch Pseudo-opcode AIF
(2) Unconditional branch Pseudo- opcode AGO
AIF is similar to IF statement, the lable used for branching 1s
known as sequencing symbol.
A sequencing symbol has the syntax
< ordinary string >
AGO is similar to GO 10 statement
An AIF statement has the syntax
AIF (< expression >) < sequencing symbol >

An AGO statement has the syntax

AGO < sequencing symbol >
g5

An example showing the usage of AIF, AGO and the

sequencing symbol is shown in Fig. 2.4.1.

MACRO

ONCE
ADD
AGO

TWICE
ADD
ADD
AGO

“THRICE
ADD
ADD
ADD

- FINAL MEND

VARY &COUNT, &ARG]

AlF (&COUNT -EQ' 1) -ONCE
AIF (&COUNT :EQ: 2) ‘TWICE
AlF (&COUNT -EQ- 3) : THRICE
AGO ‘FINAL

MOVER AREG, X

AREG, &ARG!

-FINAL

MOVER AREG, X

AREG, &ARGH
AREG, &ARGI
‘FINAL
MOVER
AREG, &ARG]
AREG, &ARG]
AREG, &ARG]

AREG, X

Fig. 2.4.1 : A macro with conditional expansion

In this macro, the number of instructions generated during
expansion will depend on the value of the parameter &count.
ONCE, TWICE and THRICE are seguencing symbol. They
help in transfer of control during expansion of the macro.

Various cases of macro expansions are shown below

Macro call Expanded source
| VARY 1. Y | MOVER AREG. X
ADD AREG. Y

VARY 2. Y MOVER AREG, X
ADIDD AREG, Y
A AREG, Y
MOVER AREG. X
A AREG. Y
ADD AREG, Y
ADD AREG, Y__J_
AlF and AGO statements do not appear in the expanded
source. AlIF and AGO statements control the seguence in
which the macro processor expands the statements during

EX pansion.

Sequencing symbols do not appear in the expanded code.

Expansion time variables are used during macro expansions.

——

L Bese vanables are declared as local variables. LLocal variables are
S=clared as given below

LCL <&variable name> |, <&variable name> ...}

An expansion time variable can be manipulated through the
satement SET. The SET statement is written as

<Expansion ume variable> SET <expression>

- In many macros, similar statements are generated during

expansion.
< For example, the macro shown in Fig. 2.4.2 generates similar
\‘tu[c'mcnls-__ —n = . -
MACRGO
CLEAR | ARG
MOVER AREG, = 'OF
MOVEM AREG &KARG
MOVEM AREG, &ARGH+1
MOVEM AREG, KARGH2 :
MOVEM AREG, &ARG+3 :
MEND {

Fig. 2.4.2 : A macro with similar statements

— The macro given in Fig. 2.4.2 can be re-written as shown in

A call 1o macro CLEAR with the statement,
"~ (LEARA
Wit lead 1o following expansion
MOVER AREG, = ('
MOYEM AREG, A
MOVEM AREG, A+ |
MOVEM AREG, A +]
MOVEM AREG, A +3

The above code stores the value ‘0" in four consecutive
locations with the address A, A+ 1. A+ 2and A 43

= Alteravely, te same effet can be created by implementing
oo for expansion. Loap can ceate the same effect s given
n the macro CLEAR. Expansion time loop can be witien
Using expansion tme variable,

Fig. 2.4.3.

MACRO

CLEAR B&ARG, &N

LCL &M

&M SET 0

MOVER AREG, =0’

™ MORE MOVEM AREG, &ARG + &M

it will loop N

Hvise &M SET&M+1

AlF (&M -NE:- &N) MORE

MEND

Misalocal EV

M is Initialized

M Is Incremented

(s3.5)Fig. 2.4.3 : An equivalent macro written using expansion

time variable (EV)

— A call to macro CLEAR (Fig. 2.4.3) with the statement.

CLEAR A,3

will loop three times for each value of M from O to 3 with the

following expansion.
MOVER AREG, =0
MOVEM AREG, A
MOVEM AREG, A + |
MOVEM AREG, A + 2 — M=2
MOVEM AREG. A + 3

Macro pre-processor takes a source program containing
macro definiions and macro calls and translates into an assembly
language program without any macro definitions or calls. This
program can now be handed over to a conventional assembler to

obtain the target language (as shown in Fig. 2.5.1),

= rogram with
macro definitions
and calis Macro
Dreprocessor "

-

N

- Asasambier — a q_,.é..’
progiam

Assambly
language program

without macros

ss38)kFig. 2.5.1 : A scheme for a macro pre-processor

It 1s possible to implement a macro pre-processor which

processes macro definitions and macro calls for the purpose of

expansions.

2.5.1 issues Related to the Design of a
Simple Macro Preprocessor

We will go for a simple two pass macro pre-processor and

thhen enhance it to handle advance features like
]. ATl 2 AGO

- —

> Sequencing symbol = FExpansion ume vanable
The macro pre-processor has to perform the four basic tasks
1. Recognize macro defimitaon

Save the macro definition

Recognize macro calls

FExpand macro calls and substitute arguments.
A macro definition 1s identified by MACRO and MEND
pseudo opcodes.
A macro definiuon s saved as it is required during macro
exXpansion.
A macro call appears as operation mnemonic
During macro expansion, the pre-processor must substitute
formal parameters with actual parameters.
A macro pre-processor has to do the following
FPass 1
Scan all macro definitions one by one. For each macro:

{a) Fnter its name 1n the Macro Name Table (MNTO.

Store the entnire macro definition in the Macro
Detinition Table (MIDT).

Add the informatnon to the MN'T indicating where the

deftininon of a macro can be found in MDT

Prepare arcument hist arrav.

Pass 2

Examine all statements in the assembly source program (o
detect macro calls. For each macro call :

(a) Locate the macro name in MNT.

(b) Estabhsh correspondence between formal parameters

and actual parameters.

Obtain information from MNT regarding position of the

macro definition in MDT
Expand the macro call by picking up model statements
from MDT.

Example 2.5.1
Consider the following code seament.

MACRO

INCR EX, &Y, &EREG = AREG
MOVER ®, &X

ADD ®, &Y

MOVEM &EREG, &X

MEND

MACRO

DECR EA, &B, ® = BREG
MOVER ®, &A

SUB ®, &B

MOVEM SREG, &A

MEND

START 100

READ N1

READ N2

INCRHR N1, N2, REG = CREG
DECR N1, N2

STOP

N DS 1
N2 DS 1
END

Show the contents of

(i) Macro Name Table

(ii) Macro Definition Table
(i11) Argument List Array

Solution :
Pass | of the macro pre-processor will store the details of the
two macros in MNT and MDT.

J MDT]
INCH &X, &Y, ® = AREG
MOVER #3, #1

ADD #3, #2

MOVEM #3, #1

MEND

DECR &A&BE® = BREG
MOVER #3, #1

SuB 3, #2

#1 - First parameter MOVEM #3, #1

e - Second parameter MEND

#3 - Third parameter -

MNT
Address in MDT

N = O

O 0 NO O B W

s3.7)Fig. Ex. 2.5.1

FPass II of the macro pre-processor will create the argument

array, every time thesre is a call to macro, and expand the

Macro call

INCR N1, N2, REG = CREG

Argument list array

Expanded code :
MOVER
Al
MOVEM

Macro call

DECR N1, N2

Argument list array

Defanlt value

Expanded code :
MOVER ARECG NI
SUB AREG, N2
MOVEM AREG, NI

;o —

& Pass 1

Uses the following databases :
L. SOUrce program as inpuf
2 Source program without macro definition as output of
pass| and iput of passZi.
Macro defimition table (MD1)
Macro name table (MNT)
Argument list array (ALA)
MNTP (macro name table pointer)
MDTP (macro definition table pointer)

A source program contaiming both macro definitions and
macro calls is given as input to passl of microprocessor.

The MNT is used to store name of macros. The entire macro

definition is stored in the MDT. The index into MD'T (starting row

number of this macro definition) is stored in MNT.

2.5.3 Flow CThart for Pass 1

S
Z
a b1
T
I
00

Head Nnaext
sourcee lins

Wirite copy
3T SOoOurces
fime

Macro
pseudo
oPpoode

NO

=Enter Macro mame

—— and the current value —
. of MDTPF im MINT : Read next
: SsSource line

[MNTF, = MINTFFE +— 1] Substitute INdsax
noitation
l for argumeaentis
[Frepare argument st] l
l : Enter th« lines
im NMDT
Enter macro name ine L
Ses inmn NMIDOT :
L [MADDTFP — MDTPFP + 1 l
[NMODTF — MDTFRF -+ 1]——0—

(sa.a)Fig.

Pass-2 uses the following databases

Input source program for pass-2. It is produced by pass-1.
Macro definition table (MDT) produced Dy pass-1.

Macro name table (MNT) produced by pass-1.

MNTP (macro name table pointer) gives number of entries in
MNT

Argument list array (ALA) gives association between in
indices and actual parameters.

Source program with macro-calls expanded. This is output of
pass-2

MDTP(macro definition table pointer) gives the address of

macro defimtion in macro definition table

Flow Chart for Pass-2

|
k.

Roact naxt
NANIIITSE 1)

’
{copiad by
)

3 =
—— s ¥
PSS A

T

Saarch MINT 1or
match with

opemmiion coce

Macrmo
name
found 7

Wrile into
expanded fis

from MINT entry Oopcoda”?

I

=

Ve-l:«
-
—Upply the asxpandad

O assombier

Create argurmernt

=aflT

' END
M[::-(-P - g)l'—’.‘ th‘—‘ }'_\GE'.‘X] ‘_x:“:gu.-‘()

sSourcse ne

, Write expandad

1There are several methods for handling of nested macro calls.
These methods are :

Methods for handiling of
nested macro calls

) Several lavels xpansion

(2} Recursive expansion

(3) Use of stack during expansion
IR —

. — ——

. C2.2 : Methods for handline of nested macro calls
b o

Several levels of expansions

2.6.1 illustrates nested macro calls. The macro call

COMPUTE]] - il

Call be expanded (level 1)

using the algorithm of
exXpansion.

NMacro

,'

l'.

contains macro calls. The macro
=xpansion algorithm can be applied to the first level expanded code
O expand these macro calls and so on. until we
vhich does not contain

COMPUTEI X, Y. Z

[COMPUTE X
T COMPUTE Y
L COMPUTE Z

The expanded code itself

obtain a code form

any macro calls. This approach requires

everal passes of expansion, which is not desirable

“* (2) Recursive expansion

To handle nested macro calls, the macro expansion function Topr 2 nointer
should be able to work recursively. During recursion, while MEC | Pmm 0 he
processing one macro the processing of inner macro can begin and Parameter 1 o g

TR i T fameter t beginning of the

after the expansion of inner macro finishes, the processing of outer e ation recond
Macro mgy continue. A recursion is hundlcd. through.a stack, whf:re | | acivato
local variables are stored onto the stack before making a recursive Parametern
call,
* (3) Useof stack during expansion Activation racord

Nested macro calls can be handled with the help of explicit 183.11}ﬁ8' 2.}

stack.

anen involves nushing o activation record
= Macro calls are handled in LIFO manner - Ever Y call to a macro nvolves pu.shmg dl)

— Stack can be used to accommodate the expansion time data onto the stack. i
' . ¥ 1‘ .) ‘ s
i At the end of the macro expansion, an activation fecord |
— Expansion time data structure include : : P A, TR » stack can be shifted to
: L L removed from the stack. The top of the stack

l. MEC - Macro expansion counte . '
410 expansion counter the next record through the following operation.

2. Actual parameter table

- Expansion time data structure is stored in an activation
record. The structure of the activation record is given in
Fig. 2.6.1.

jop = stack{top] - 1

Example 2.6.1

Consider the following code segment

1. MACRO

2. INCR A, &B, ®
3. MOVER E®, &A
4. ADDS &A, &B
5. MOVEM EREG, &A
. MEND

y o5 MACRO

8. ADDS &F, &S

O. MOVER AREG, &F
10. ADD AREG, &S
. MOVEM AREG, &S
12. WRITE &S

13. MEND

14. MACRO

g 3 & SUBS &F, &S

16. MOVER BREG, &F

| SUB BREG, &S
18. MOVEM BREG, &S
19. WRITE &S

20. MEND

21 START 200

22. READ N

23. READ N2

24. ADDS N1, N2

25. SUBS N1, N2

26. INCR N1, N2, DREG
27. STOP

28. N1 DS 2
29. N2 DS 2

Show the content of

(1) Macro name table

(i) Macro definition table
(ii1) Argument list Array

jution :

‘ =) I. Expansion of line 24 ADDS N1, N2
ass 1: Contents of MNT and MDT at the end of Pass L.

Argument list array : O N1
MNT MDT 1 | N2
Name MDTP Opcode Rest Activation record on the stack :
0 | INCR 0 0 | INCR &A, &B, ®
Top —» 3 O :
1 | ADDS S] MOVER | #2, #0 2 b MEC =5
1 N1]
2 | SUBS 11 2 | ADDS #0, #1 o b N2
3 | MOVEM | #2, #0 Expanded Code : MOVER AREG, NI
ADD AREG, N2
4 | MEND MOVEM AREG, N2

WRITE N2

AN

ADDS &F, &S
2. Expansion of line 25 SUBS N1, N2

6 MOVER AREG, #0 Argument list array - O | NI
] N2

7 | ADD AREG, #]

Activation record on the stack :

8 | MOVEM | AREG, #]

9 | WRITE #1
TOoOp—> 3 | O _.
10 | MEND > Ftc =11
1 ¥ N1
11 | SUBS &F, &S 0 N2
12 | MOVER BREG, #0 Expanded Code : r MOVER BREG. N1)
13 | SUB BREG, #1 < SUB BREG, N2 }
MOVEM BREG, N2
14 | MOVEM | BREG, #]
. WRITE N2 3
1S | WRITE | #1 3. Expansion of line 26 INCR N1, N2, DREG
16 MEND Argument list array : O N1

i N2
2 DREG

Activation record (stack)
(a) At the beginning

Top —» 0
3 MEC =0
2 N1
N2
0 DREG

(b) At the time of nested macro call

ADDS #0, #1

TOp =——p g8 S
7 MEC =5
8 N1
5 N2
4 O
3 MEC =2
2 N1
1 N2
0 DREG

Expanded Code : r MOVER DREG, NI

 MOVER AREG, NI

<< ADD AREG, N2
MOVEM AREG. N2
‘ WRITE N2

~ MOVEM DREG. N1

Expanded source file at the end of pass I :
START 200
READ NI
READ N2

" MOVER
ADD
MOVEM
| WRITE

MOVER
SUB
MOVEM
L. WRITE

» MOVER
~ MOVER

ADD

~ WRITE

STOP
NI
N2

MOVEM

~ MOVEM

AREG,

AREG,

AREG,
N2

BREG,

BREG,

BREG,
N2

DREG,
AREG,
AREG,
AREQG,

N2

DS
DS

DREG,

N2
N2

N1
N2
N2

t.

N1 |

¢

N1l
N1 =
N2
N2

NI

\

Expansion of ADDS N1, N2

Expansion of SUBS N1, N2

Expansion of INCR
N1, N2, DREG

Example 2.7.1

Consider the following program segment :

MACRO
DEFINE
MACRO
SXYZ
MOVER
SOP
MOVEM
MEND
MEND
MACRO
COMPUTE
MOVEM
INCRM
MOVER
MEND
MACRO
INCRM
MOVER
ADD
MOVEM
MEND
START
DEFINE
COMPUTE
CALC
END

EXYZ

&X, &Y, &O0OFP
AREG, &X
AREG, &Y
AREG, &X

&F, &S
BREG, TMP
&, &S, BREG
BREG, TMP

SM, &1, &R
&R, &M
&R, &l

&R, &M

100

CACL

e

A, B, MULT

MDT and MINT after macro

the contents of

Show
processing
Expanded assembly language program.

(1)

(ii)

et h e, —

Naine

DEFINE

| COMPUTE
INCRM
CALC

This will come

Into ‘{

call

exist=ance atter a

to DEFINE

DU

——n

MDT

Opcode nest
DEFINE EXYZ
MACRO
H#0O &X, &Y, &OP
MOVER AREG, &X
& 0P AREG, &Y
MOVEM AREG, &X
MEND
MEND

COMPUTE

&F, &S

MEND

MOVEM BREG, TMP

INCRM #0, #1. BREG

MOVER BREG, TMP

MEND

INCRM &M, &I, &R
'MOVER 2, #0

ADD #2, #1

MOVEM #2, #0

MEND

CALC &X. &Y, &OP

MOVER AREG. #0

#2 AREG, #1

MOVEM AREG, #0

(ii) Expanded assembly language program

Source Ine Expanded code
START 1 00 START 100
DEFINE CAILC NO code will be generated
COMPUTE X.Y - MOVEM BREG, TMP
INCRM &M &1 &R
MOVER BREG, =
ADD BREG, Y
MOVEM BREG, xX |
MOVER BREG, TMP
CALC A. B, L MUL'T , MOVER AREG, A
MULT AREG, B
MOVEM AREG, A
END - END
Thus the final code will be
START 100
MOVEM BREG, TMP
MOVER BREG, >
AIDD BREG, Y
MOVEM BREG, x
MOVER BREG, TMP
MOVER AREG, A -
MULT AREG, B
MOVEM AREG, A

N

Exampile 2.7.3

Consider the following code, show the contents of macro
name table and macro definition table.

START 100
SR ~ X
USING > 3D
MACRO
XYZ & A
ey 1, & A
AR 2, 2
MEND
L 1. "Bl
MACRO
ABC Sz
>R 3 3
MACRO
DISPLAY
Xy Z =
MEND
L 1, & =z
MEND
XvZ =1
SR 4. 4
ABSC B1

ﬂ

solution :
XY=

A

AR
MEND
ABC

=
MACRO
DISFPLAY
XY Z
MEND

=

MEND
DISPLAY
Y Z
MEND

MIN
iAddress in MDT
"

4
12

.

-hO)N*‘O(OOJ\JC)m&b)fO-*Q

“‘ S T S)

Yy

= panded code
START 100
SK U
USING *, 15

History of Compiler

The “compiler” word was first used in the early 1950s
by Grace Murray Hopper

The first compiler was build by John Backum and his
group between 1954 and 1957 at IBM

COBOL was the first programming language which
was compiled on multiple platforms in 1960

The study of the scanning and parsing Issues were
pursued In the 1960s and 1970s to provide a complete

solution

Compiler
Compiler is a translator which converts the high

level language into low level language.

Benefits of writing a program In a high level
language
Increases productivity: It Is very easy to write a

program In a high level language.

Machine Independence: A program written in a

high level language I1s machine independent.

Features of Compiler
Compilation speed.

The correctness of machine code.

The meaning of code should not change.
Speed of machine code.

Good error detection.

Checking the code correctly according to

grammar.

Uses / Applications of Compiler

Helps to make the code Independent of the
platform.

Makes the code free of syntax and semantic
errors.

Generate executable files of code.

Translates the code from one language to

another.

Steps In language processing system

Source Program

Pre-processor

Modified Source Program
2 puruSS_ ocom

| |
!

Target assembly program

Library Files

l

Relocatable machine code

l

Linker/Loader

Target machine code

COMPILERS

+ “Compilation”
— Translation of a program written Iin a source

language into a semantically equivalent program
written In atarget language

Compiler

Phases of Compiler

SOURCE PROGRAM

~ LEXICAL ANALYSER |

I SYNTAX ANALYSER ll

| SEMANTIC ANALYSER |

ERROR HANDLER J

—

INTERMEDIATE CODE |
= GE L_.; IOR

| CODEOPTIMIZER |

~ CODE GENERATOR |

TARGET PROGRAM

Source

Lexical
analyzer

l

Syntax analyzer
Semantic
analyzer

Analysis phase

[EEE———

£ Intermediate Error detection
| code generator | i | and handling

| Symbol table
Management

by l Synthesis
\‘ Code optimizer phase

;

|
i
I
1
\ | Code generator

Target machine code

Fig. 1.7 Phases of combiler

Example : https://youtu.be/P1bQUyl_ t0

* Streamm of rokKorys

'..ll‘--. l-fLL

l‘.r()n L l‘o. " (l

* .\(uP»(Jt\J VYN l-l\(6/

— e —— — < ADtCrIMcdiate Code LS
cration 2

Gen ;
.
2.
lzrnxcarx fCMICsScrIiaDon o
Oof svtax Irce

Code Optimization

¢ ()|~tlnn roead U ode

| Code Generation

I ! AFZert prrogsraam

Code in Machine Language

Back IEnd

https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Phases of Compiler

» Lexical Analysis :
1. It takes the high-level language source code as the Input.

2. It scans the characters of source code from left to right.

Hence, the name scanner also.

3. It groups the characters Into lexemes. Lexemes are a

group of characters which has some meaning.
4. Each lexeme corresponds to form a token.
5. It removes white spaces and comments.

6. 1t'¢hHecks and removes thie'lekical’ errors.

Phases of Compiler
» Syntax Analysis :

1. ‘Parser’ Is the other name for the syntax analyzer.
2. The output of the lexical analyzer is its input.
It checks for syntax errors In the source code.

It does this by constructing a parse tree of all the tokens.

a B~ W

For the syntax to be correct, the parse tree should be

according to the rules of source code grammar.

6. The grammar for such codes Is context-free grammar.

Phases of Compiler

* Semantic Analysis :

1.
2.

3.

4.

It verifies the parse tree of the syntax analyzer.

It checks the validity of the code In terms of
programming language. Like, compatibility of data
types, declaration, and initialization of variables, etc.

It also produces a verified parse tree. Furthermore, we

also call this tree an annotated parse tree.

It also performs flow checking, type checking, etc.

Phases of Compiler

* |Intermediate Code Generation :

1. It generates an intermediate code.

2. This code Is neither In high-level language nor in machine

language. It Is In an intermediate form.

3. lItis converted to machine language but, the last two phases are

platform dependent.

4. The iIntermediate code 1s the same for all the compilers.

Further, we generate the machine code according to the

platform.

5. *Anexample of an intermediatecode IS three address code.

Phases of Compiler

* Code Optimizer :

1.
2.

It optimizes the intermediate code.

Ilts function 1S to convert the code so that 1t executes faster

using fewer resources (CPU, memory).
It removes any useless lines of code and rearranges the code.

The meaning of the source code remains the same.

Phases of Compiler

 Code Generator :

1. Finally, 1t converts the optimized intermediate code

Into the machine code.
2. This Is the final stage of the compilation.

3. The machine code which Is produced is relocatable.

Phases of Compiler

* Lexical Analysis :

Lexical analyzer phase Is the first phase of compilation process. It takes source
code as input. It reads the source program one character at a time and converts it
Into meaningful lexemes. Lexical analyzer represents these lexemes In the form

of tokens.

« Syntax Analysis :

Syntax analysis Is the second phase of compilation process. It takes tokens as
Input and generates a parse tree as output. In syntax analysis phase, the parser

checks that the expression made by the tokens iIs syntactically correct or not.

Phases of Compiler

« Semantic Analysis :

Semantic analysis Is the third phase of compilation process. It c

the parse tree follows the rules of language. Semantic analyzer

necks whether

Keeps track of

identifiers, their types and expressions. The output of semantic analysis phase Is

the annotated tree syntax.

 |Intermediate Code Generation :

In the Intermediate code generation, compiler generates the source code into the

Intermediate code. Intermediate code Is generated between t

language and t

ne high-level

ne machine language. The intermediate code should

In such a way t

be generated

nat you can easily translate it into the target machine code.

Phases of Compiler

« Code Optimization :

Code optimization Is an optional phase. It Is used to improve the intermediate
code so that the output of the program could run faster and take less space. It
removes the unnecessary lines of the code and arranges the sequence of

statements in order to speed up the program execution.

« Code Generation :

Code generation i1s the final stage of the compilation process. It takes the
optimized iIntermediate code as input and maps It to the target machine
language. Code generator translates the intermediate code into the machine code

of the specified computer.

Example : c=ath*5;

l

Lexical analyzer

'

<id, 1><=><id, 2>I+><id, I>< <>

Syntax analyzer

'

Intermediatecode generator

:
t1 = inttoftoat(5)
t2=id; " t1
t3 = id,+ t2
id¢= 13

l

Code optimizer

l

t1 = ids * (5)
ids=id; * t4

'

Code generator

LDF R2, id;
MULF R2, #5.0
LDF R1, id;
ADDF R1, R2
STF idy, R

Types of Compiler

1. Cross Compilers
They produce an executable machine code for a platform but, this platform is

not the one on which the compiler is running.

2. Bootstrap Compilers
The process of writing a compiler (or Assembler) In the target programming

language which has to be compiled is known as "Bootstrapping*

3. Source to source/transcompiler
These compilers convert the source code of one programming language to

the source code of another programming language.

Types of Compiler

4. Incremental compiler :

Incremental Compiler 1s a compiler, which performs the recompilation of

only modified source rather than compiling the whole source program

Decompiler

Basically, it 1s not a compiler. It iIs just the reverse of the compiler. It

converts the machine code into high-level language.

ISSUES IN COMPILATION

Hierarchy of operations need to be maintained to
determine correct order of expression evaluation

Maintain data type integrity with automatic type
conversions

Handle user defineddata types.

Develop appropriate storage mappings

ISSUES IN COMPILATION

Resolve occurrence of each variable name ina program I.e
construct separate symbol tables for different

‘nhamespaces.

Handle different control structures.

Perform optimization

Ik BLOCK SCHEMATIC OF
. LEXICAL ANALYZER

Intermediate
Representation

Source
Program

Parse tree

lllllllllll
HHHHHHHHHHHHHHHHH

BLOCK SCHEMATIC OF
LEXICAL ANALYZER

Lexical analysis Is the process of converting a sequence of

characters from source program into a sequence of tokens.
A program which performs lexical analysis Is termed as a

lexical analyzer (lexer), tokenizer or scanner.

Lexical analysis consists of two stages of processing which
are as follows:

 Scanning

 Tokenization

=, ¥ BLOCK SCHEMATIC OF
LEXICAL ANALYZER

Roles of the Lexical analyzer

L_exical analyzer performs below given tasks:

Helps to identify token into the symbol table
Removes white spaces and comments from the source program

Correlates error messages with the source program

> W o=

Helps you to expands the macros if it i1s found In the source
program

5. Read input characters from the source program.

=, BLOCK SCHEMATIC OF
[EXICAL ANALYZER

Lexical Analyzer vs. Parser

Lexical Analyser Parser
Scan Input program Perform syntax analysis
|dentify Tokens Create an abstract representation of
the code
Insert tokens into Symbol Table Update symbol table entries
It generates lexical errors It generates a parse tree of the

source code

|\ |

),
ap
£
I
A
d

ANIA
. AINAIN

ND
b
H

b
8!
D
@
T

BASIC TERMINOLOGIES OF
LEXICAL ANALYSIS

O Major Terms for Lexical Analysis?
o TOKEN

» A classification for a common set of strings

» Examples Include <ldentifier>, <number>, etc.
o PATTERN

» The rules which characterize the set of strings for
a token

» Recall File and OS Wildcards ([A-Z]*.%)
o LEXEME

» Actual sequence of characters that matches pattern
and 1s classified by a token

> ldentifiers: X, count, name, etc...

LIM71£ULI rN\Ur. AINNAIND OIr'iANN9Y

W BASIC TERMINOLOGIES OF
“ LEXICAL ANALYSIS

iJ)_IQJE_Q)"

__ Token n.o Seqmmce 9- c}aayac}ces- mel" c;qn' be b'mb:aL_.

__ap Single logical evhhen: o
gg \denhfier , keywoovd , oPeqah)r consteumt Speaai_s_m;mbol_m

,_)_agaiu_e__m Il i " e
OovHem Ja sek a_w\@ u’oh)dn dmcmbe A4he ShmdlLL/-L or
Wqurogrm 3 et o emeBS sljddol

e . Jo -9] deteck ~r_m\:k aumbey o-4

[a-2] deeck only Small deHer - el SO 4 <
CAn] B pew line. i ey syl |

-e-q- \QX_QD_\LQ.,_.J/) | PV_G,’.CDLL‘Z_B | PVr cne>323 .

Wpoil) matek with paticrn a2l , [a-Z] and (=41 e

» “Yterpretation”

— Performing the operations implied by the
source program

Source
Program

Interpreter

Error Messages

= 0o

311712619 PROFANAND GHARU

Difference between Compiler and Interpreter

No

2

—
4

802 x 505

Compiler

Compiler Takes Entire program as
mput

Intermediate Object Code is
Generated

Conditional Control Statements are
Executes faster

Memory Requirement : More
(Since Object Code is Generated)

Program need not be compiled every
time

Errors are displaved after entire
program is checked

Example : C Compiler

Interpreter

Interpreter Takes Single instruction as
mput .

No Intermediate Object Code is
Generated

Conditional Control Statements are
Executes slower

Memory Requirement is Less

Every time higher level program is
converted into lower level program

Errors are displaved for every
instruction interpreted (if anv)

Example : BASIC

Position of a Parser in the
Compiler Model

Token,
tokenval
Source Lexical S Parser Intermediate
Program—> Analyzer » and rest of —>epresentation
Get next front-end
l N token 7 l
\
\ /
\ /
, /
Lexical error \\ / Syntax error
Y)/ Semantic error
\ /
\ /
Symbol Table

83

source
program

reeulal

EXPressions

1
lexical
analyzer

suses a grammar to check
structure of tokens
‘produces a parse tree
ssyntactic errorsand recovery
'recognize correct syntax
sreport errors

Position of a Parser in the
Compiler Model

token

gel next

errors
x
' rest of interm
parser [P | nlerm
tree | frontend repres
symbol «also technically part or
table parsing

'includes augmenting Info on
tokens in source, type
checking, semantic analysis

84

1.

2.

The Role Of Parser

A parser implements a C-F grammar
The role of the parser is two fold:
To check syntax (= string recognizer)

— And to report syntax errors accurately

To invoke semantic actions

— For static semantics checking, e.g. type checking of
expressions, functions, etc.

— For syntax-directed translation of the source code to an
intermediate representation

85

The Role Of Parser

1. It verifies the structure generated by the tokens based
on the grammar.

2. It constructs the parse tree.

3. It reports the errors.

4. It performs error recovery.

Issues :

Parser cannot detect errors such as:

1. Variable re-declaration

2. Variable initialization before use

3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

86

The Role Of Parser

Syntax error handling :
Programs can contain errors at many ditferent levels. For
example :

1. Lexical, such as misspelling an identifier, keyword or
operator.

2. Syntactic, such as an arithmetic expression with
unbalanced parentheses.

3. Semantic, such as an operator applied to an
incompatible operand.

4. Logical, such as an infinitely recursive call.

87

The Role Of Parser

Functions of error handler :

1. It should report the presence of errors clearly and

accurately.

2. It should recover from each error quickly enough to be
able to detect subsequent errors.

3. It should not significantly slow down the processing of

correct programs.

88

m TYPES OF ERRORS

A parser should be able to detect and report any error in the
program. It Is expected that when an error Is encountered, the
parser should be able to handle It and carry on parsing the rest
of the input. Mostly It Is expected from the parser to check for
errors but errors may be encountered at various stages of the

compilation process. A program may have the following
Kinds of errors at various stages:

Lexical error : name of some identifier typed incorrectly
Syntactical error: missing semicolon or unbalanced
parenthesis

Semantical error : incompatible value assignment

L_ogical error: code not reachable, infinite loop

Compile time error.

Compile time Runtime
3 # F
Lexical phase syntactic Semantic

errors phase errors errors

THANK YOU!!!

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

