
“INTRODUCTION OF SP”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

METIOE Computer Dept.

01 JULY 2021

.

CLASS : TE COMPUTER 2019

SUBJECT : SPOS (SEM-I)

UNIT : I

SYLLABUS :-

 Introduction to Systems Programming, Need of Systems

Programming, Software Hierarchy, Types of software:

system software and application software, Machine structure.

Evolution of components of Systems Programming: Text

Editors, Assembler, Macros, Compiler, Interpreter, Loader,

Linker, Debugger, Device Drivers, Operating System.

Elements of Assembly Language Programming: Assembly

Language statements, Benefits of Assembly Language, A

simple Assembly scheme, Pass Structure of Assembler.

Design of two pass Assembler: Processing of declaration

statements, Assembler Directives and imperative statements,

Advanced Assembler Directives, Intermediate code forms,

Pass I and Pass II of two pass Assembler. MR. ANAND GHARU

CONTENTS :-
1. Introduction to Systems Programming

 - Need of Systems Programming

 - Software Hierarchy

 - Types of software: system software and application

 software.

2. Evolution of components of Systems Programming:

 - Text Editors

 - Assembler

 - Macros

 - Compiler

 - Interpreter
MR. ANAND GHARU

CONTENTS :-
2. Evolution of components of Systems Programming: -

 - Loader

 - Linker

 - Debugger

 - Device Driver

 - Operating System.

3. Elements of Assembly Language Programming:

 - Machine structure

 - Assembly Language statements, Benefits of Assembly

 Language

 - A simple Assembly scheme, Pass Structure of

 Assembler. MR. ANAND GHARU

CONTENTS :-
4. Design of two pass Assembler:

 - Processing of declaration statements

 - Assembler Directives and imperative statements

 - Advanced Assembler Directives

 - Intermediate code forms

 - Pass I and Pass II of two pass Assembler.

MR. ANAND GHARU

CONTENTS :-

Sample videos :

1. Preprocessor :

https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3y

N2AG0JiREp

2. Compiler execution stages :

https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3y

N2AG0JiREp

MR. ANAND GHARU

https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp

Computer : A programmable device that can store, retrieve,

and process data.(Combination of H/w & S/w)

Hardware : things which we can touch.

Software : things which we cannt touch.(Can only see)

Programming: A programming language is a set of

commands, instructions, and other syntax use to create a

software program.

Data : Information in a form a computer can use

Information : Any knowledge that can be communicated

Introduction

 Computer program : Data type specifications and instructions

for carrying out operations that are used by a computer to solve a

problem.

Machine language : The language, made up of binarycoded

instructions, that is used directly by the computer

Assembly language : A low-level programming language

in which a mnemonic is used to represent each of the

machine language instructions for a particular computer

Introduction

Source code : Program or set of instructions written in a

high-level programming language

Object code : A machine language version of source

code.

Target code : program output in Machine code (binary

form)

,

Introduction

Introduction
Preprocessor :

a preprocessor is a program that processes its input data to

produce output that is used as input to another program.

Editor : A text editor is a type of computer program that edits

plain text. Such programs are sometimes known as "notepad"

software

Compiler : A program that translates a program written in a high-

level language into machine code

Assembler : A program that translates an assembly language

program into machine code

Introduction

Loader:-

• A loader is a program used by an operating system to load

programs from a

secondary to main memory so as to be executed.

Linker :

a linker is a computer program that takes one or more object files

generated by a compiler and combines them into one, executable

program

Debugger :

Debugger is program which is used to test program or execute

program in single step execution.

Introduction
• What is System?

– System is the collection of various components

• Ex:- College is a system.

• College is a system because it consist of

various components like various departments,

classrooms, faculties and students.

• What is Programming?
– Art of designing and implementing the programs.

MR. ANAND GHARU

Introduction
• What is System Programming?

–Systems programming involves the development of

the individual pieces of software that allow the

entire system to function as a single unit.

–Systems programming involves many layers such

as the operating system (OS), firmware, and the

development environment.
MR. ANAND GHARU

• In college system, what is program?

• A LECTURE can be a program. Because it has

input and output.

• Input-> The information that teacher is

delivering.

• Output-> The knowledge student has been

received.

So system programming is an art of designing

and implementing system Programs.

Introduction

MR. ANAND GHARU

• System programs provide an environment where

programs can be developed and executed.

• In the simplest sense, system programs also

provide a bridge between the user interface and

system calls.

• In reality, they are much more complex. For

example, a compiler is a complex system program.

Need of System Programming

MR. ANAND GHARU

• The system program serves as a part of the

operating system. It traditionally lies between the

user interface and the system calls.

• The user view of the system is actually defined by

system programs and not system calls because that

is what they interact with and system programs are

closer to the user interface.

Need of System Programming

MR. ANAND GHARU

Need of System Programming

MR. ANAND GHARU

• In the above image, system programs as well as

application programs form a bridge between

the user interface and the system calls. So,

from the user view the operating system

observed is actually the system programs and

not the system calls

Need of System Programming

MR. ANAND GHARU

Need of System Programming

MR. ANAND GHARU

Software Hierarchy
A software hierarchy is the combination of product, version,

and release (or feature) that represents an item of software in a

database or knowledge base. The product is the root of the

hierarchy.

• Software

1. System Software

· Operating System

· System Support

· System Development

2. Application Software

· General Purpose

· Application Specific
MR. ANAND GHARU

Software Hierarchy

MR. ANAND GHARU

What is Software ?

• Software is collection of many programs

• Two types of software

–System software: These programs assist

general user application programs

• Ex:- Operating System , Assembler etc.

– Application software

• These are the software developed for the specific

goal.

• Ex. Media Player, Adobe Reader etc MR. ANAND GHARU

System software Vs Application software

MR. ANAND GHARU

System software Vs Application software
Sr.

No
System Software Application Software

1.
System software is used for operating

computer hardware.

Application software is used by user to

perform specific task.

2.

System softwares are installed on the

computer when operating system is

installed.

Application softwares are installed

according to user’s requirements.

3.

In general, the user does not interact with

system software because it works in the

background.

In general, the user interacts with

application sofwares.

4.

System software can run independently. It

provides platform for running application

softwares.

Application software can’t run

independently. They can’t run without the

presence of system software.

5.
Some examples of system softwares are

compiler, assembler, debugger, driver, etc.

Some examples of application softwares

are word processor, web browser, media

player, etc. MR. ANAND GHARU

System software Vs Application software
Sr.

No
System Software Application Software

1. It is general purpose software It is specific purpose software

2. Written in low level language Written in High level language

3. Small in size Large in size

4. Complex to design and implement Easy to design and implement

5.
Some examples of system softwares are

compiler, assembler, debugger, driver, etc.

Some examples of application softwares

are word processor, web browser, media

player, etc. MR. ANAND GHARU

System Programming Components

 - Text Editors

 - Assembler

 - Macros

 - Compiler

 - Interpreter

 - Loader

 - Linker

 - Debugger

 - Device Driver

 - Operating System.
MR. ANAND GHARU

Text Editors
• Editor is a computer program that allows a user to

create and revise a document..

• A text editor is a type of program used for editing plain

text files.

• With the help of text editor you can write your

program(e.g. C Program or Java Program).

• Text editor’s example is Notepad.

MR. ANAND GHARU

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file

Types of Text Editors
1. Line editor : This code editor edits the file line by

line. You cannot work on a stream of lines using the

line editor. Example of a line editor is teleprinter.

2. Stream editor : In this type of editors, the file is

treated as continuous flow or sequence of characters

instead of line numbers, which means here you can

type paragraphs.

Ex : Sed editor in UNIX

MR. ANAND GHARU

Types of Text Editors
3. Screen editors : In this type of editors, the user is able

to see the cursor on the screen and can make a copy, cut,

paste operation easily. It is very easy to use mouse pointer.

 Ex : vi, emacs, Notepad

4. Word Processor : Overcoming the limitations of screen

editors, it allows one to use some format to insert images,

files, videos, use font, size, style features. It majorly

focuses on Natural language.

MR. ANAND GHARU

Loaders
• A loader is a program that takes object code as

input and prepares them for execution.

• It initiates the execution.

• Functions:

1. Allocation

2. Linking

3. Relocation

4. Loading MR. ANAND GHARU

Functions of Loader
1. Allocation : Loader allocates space for programs in main

memory

2. Linking- which combines two or more separate object

programs (by Linker)

3. Relocation - which modifies the object program so that it

can be loaded at an address different from the location

originally specified - (Linking Loader) and data into main

memory

4. Loading - which allocates memory location and brings the

object program into memory for execution - (Loader)

MR. ANAND GHARU

GENERAL LOADING SCHEME

General Loading Scheme MR. ANAND GHARU

RELOCATION

MR. ANAND GHARU

RELOCATION

MR. ANAND GHARU

RELOCATION

MR. ANAND GHARU

Assembler

• Assembler is a translator which translates

assembly language program into machine

language.

MR. ANAND GHARU

Microprocessor

MR. ANAND GHARU

• Macro allows a sequence of source language code to be defined once and

then referred many times.

• “ A macro is a sequence of instructions, assigned by a name and could

be used anywhere in the program ”

• In NASM, macros are defined with %macro and %endmacro directives.

• The macro begins with the %macro directive and ends with the

%endmacro directive.

• Syntax:

%macro macro_name number_of_params

<macro body>

%endmacro

Macro & Macroprocessor

MR. ANAND GHARU

Macro & Macroprocessor
• A macro processor takes a source with macro definition and macro calls

and replaces each macro call with its body.

MR. ANAND GHARU

Macro & Macroprocessor
• How Macroprocessor works :

MR. ANAND GHARU

MR. ANAND GHARU

Skeletal Source Program

Preprocessor

Try for

example:

PREPROCESSORS, COMPILERS,
ASSEMBLERS, AND LINKERS

Absolute Machine Code

Linker

Assembler

Compiler

Target Assembly

Program

Relocatable Object

Code

Libraries and

Relocatable

Object Files

gcc

myprog.c

42

MR. ANAND GHARU

Compiler

• Compiler is a translator which converts the high

level language into low level language.

• Benefits of writing a program in a high level

language :

• Increases productivity: It is very easy to write a

program in a high level language.

• Machine Independence: A program written in a

high level language is machine independent. MR. ANAND GHARU

COMPILERS

• “Compilation”

– Translation of a program written in a source

language into a semantically equivalent program

written in a target language

Input

Compiler

Error

messages

Source

Progra

m

Target

Program

Output
3

MR. ANAND GHARU

Phases of Compiler

MR. ANAND GHARU

Skeletal Source Program

Preprocessor

PHASES OF COMPILER

MR. ANAND GHARU

Linker

Assembler

Compiler

46

Example : https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Skeletal Source Program

Preprocessor

C FRONT END & BACK END OF
COMPILER

MR. ANAND GHARU

Linker

Assembler

Compiler

47

Example : https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Phases of Compiler

• Lexical Analysis :

Lexical analyzer phase is the first phase of compilation process. It takes source

code as input. It reads the source program one character at a time and converts it

into meaningful lexemes. Lexical analyzer represents these lexemes in the form

of tokens.

• Syntax Analysis :

Syntax analysis is the second phase of compilation process. It takes tokens as

input and generates a parse tree as output. In syntax analysis phase, the parser

checks that the expression made by the tokens is syntactically correct or not.

MR. ANAND GHARU

Phases of Compiler

• Semantic Analysis :

Semantic analysis is the third phase of compilation process. It checks whether

the parse tree follows the rules of language. Semantic analyzer keeps track of

identifiers, their types and expressions. The output of semantic analysis phase is

the annotated tree syntax.

• Intermediate Code Generation :

In the intermediate code generation, compiler generates the source code into the

intermediate code. Intermediate code is generated between the high-level

language and the machine language. The intermediate code should be generated

in such a way that you can easily translate it into the target machine code.

MR. ANAND GHARU

Phases of Compiler

• Code Optimization :

Code optimization is an optional phase. It is used to improve the intermediate

code so that the output of the program could run faster and take less space. It

removes the unnecessary lines of the code and arranges the sequence of

statements in order to speed up the program execution.

• Code Generation :

Code generation is the final stage of the compilation process. It takes the

optimized intermediate code as input and maps it to the target machine

language. Code generator translates the intermediate code into the machine code

of the specified computer.

MR. ANAND GHARU

Example :

MR. ANAND GHARU

• “Interpretation”

– Performing the operations implied by the

source program

INTERPRTERS

MR. ANAND GHARU

Interpreter

Source

Program

Input

Output

Error Messages

5

2

MR. ANAND GHARU

MR. ANAND GHARU

Debugger

• Debugging tool helps programmer for testing

and debugging programs.

• It provides some facilities:

• Setting breakpoints.

• Displaying values of variables.

MR. ANAND GHARU

Device driver

• Debugging tool helps programmer for testing

and debugging programs.

• It provides some facilities:

• Setting breakpoints.

• Displaying values of variables.

MR. ANAND GHARU

Operating system

• It is system software which provides interface

between user and hardware(computer system)

MR. ANAND GHARU

Assembly

Language

MR. ANAND GHARU

ASSEMBLY LANGUAGE PROGRAMMING

MR. ANAND GHARU

• Assembly language is low level language.

• An assembly language is machine dependent.

• It differs from computer to computer.

• Writing programs in assembly language is very easy

as compared to machine(binary) language.

Assembly Language

MR. ANAND GHARU

Machine Instruction in Assembly Language

• Machine Instructions are commands or programs

written in machine code of a machine (computer) that it

can recognize and execute.

1. A machine instruction consists of several bytes in memory that

tells the processor to perform one machine operation.

2. The processor looks at machine instructions in main memory one

after another, and performs one machine operation for each

machine instruction.

3. The collection of machine instructions in main memory is called a

machine language program.
MR. ANAND GHARU

Machine Instruction in Assembly Language

The general format of a machine instruction is

[Label:] Mnemonic [Operand, Operand] [; Comments]

1. Brackets indicate that a field is optional

2. Label is an identifier that is assigned the address of the first byte of the instruction

in which it appears. It must be followed by “:”

3. Inclusion of spaces is arbitrary, except that at least one space must be inserted; no

space would lead to an ambiguity.

4. Comment field begins with a semicolon “ ; ”

Example:

Here: MOV R5,#25H; load 25H into R5

MR. ANAND GHARU

• Machine instruction
Format:

MR. ANAND GHARU

Assembly language programming
Terms:

• Location Counter: (LC) points to the next
instruction.

• Literals: constant values

• Symbols: name of variables and labels

• Procedures: methods/ functions

MR. ANAND GHARU

Assembly language Statements:

• Imperative Statements:

• Declarative/Declaration Statements:

• Assembler Directive:

MR. ANAND GHARU

Imperative Statements

• Imperative means mnemonics

• These are executable statements.

• Each imperative statement indicates an action to
be taken during execution of the program.

• E.g

.
MOVER

BREG, X

STOP

READ X

ADD AREG, Z
MR. ANAND GHARU

Declarative Statements

• Declaration statements are for reserving

memory for variables.

• We can specify the initial value of a variable.

• It has two types:

• DS // Declare Storage

• DC // Declare Constant

MR. ANAND GHARU

DS(Declare Storage):

• Syntax:

• [Label]

• E.g.

DS <Constant specifying size>

X DS 1

DC (Declare Constant):

Syntax:

[Label]

E.g Y

DC <constant specifying value>

DC ‘5’

MR. ANAND GHARU

Assembler Directive

• Assembler directive instruct the assembler
to perform certain actions during assembly
of a program.

• Some assembler directive are:

• START <address constant>

• END

MR. ANAND GHARU

Advanced Assembler Directives

• 1. ORIGIN

• 2. EQU

• 3. LTORG

MR. ANAND GHARU

Sample Assembly Code

1. START 100 It is an AD statement because it
 has Assembler directive START

2. MOVER AREG, X

3. MOVER BREG, Y

4. ADD AREG, Y

5. MOVEM AREG, X

It is an IS because it starts with mnemonic.

6. X DC ‘10’

7. Y DS 1

8. END

It is an DS/ DL statement because it has DC

It is an DS/ DL statement because it has DS

MR. ANAND GHARU

Identify the types of
statements State.No IS DS AD

1

2

3

4

5

6

7

8 MR. ANAND GHARU

Identify the types of
statements State.No IS DS AD

1 AD

2 IS

3 IS

4 IS

5 IS

6 DS

7 DS

8 AD MR. ANAND GHARU

Advanced Assembler Directives

• ORIGIN

• EQU

• LTORG

MR. ANAND GHARU

Advanced Assembler Directives

Origin :

The origin directive tells the assembler where to load instructions and

data into memory.

SYNTAX :

 ORIGIN

MR. ANAND GHARU

Advanced Assembler Directives

Equate:

The EQU directive is used to equate a name with an

expression, symbolic address,

or number. Whenever this name is used as a symbol, it is

replaced.

We might do something, such as the following, which makes the

symbol R12 to be equal to 12, and replaced by that value when

the assembler is run.

 E.G. R12 EQU 12

MR. ANAND GHARU

Advanced Assembler Directives

LTORG :

The LTORG directive instructs the assembler to assemble the

current literal pool immediately.

The Literal Pool contains a collection of anonymous constant

definitions, which are generated by the assembler.

The LTORG directive defines the start of a literal pool.

Syntax :

LTORG
MR. ANAND GHARU

How LC Operates?
Sr. NO LC
1 START 100

2 MOVER AREG, X

3 MOVER BREG, Y

4 ADD AREG, BREG

5 MOVEM AREG, X

6 X DC ‘10’

7 Y DC ‘15’

8 END

MR. ANAND GHARU

How LC Operates?
Sr. NO LC

1 START 100

2 MOVER AREG, X 100

3 MOVER BREG, Y 101

4 ADD AREG, BREG 102

5 MOVEM AREG, X 103

6 X DC ‘10’ 104

7 Y DC ‘15’ 105

8 END

MR. ANAND GHARU

Identify symbol, literals, AD, DS, IS ,
Symbol, Literal Label

• START 100
• MOVER BREG, =‘2’
• LOOP MOVER AREG, N
• ADD BREG, =‘1’
• ORIGIN LOOP+5
• LTORG
• ORIGIN NEXT +2
• LAST STOP
• N DC ‘5’
• END

MR. ANAND GHARU

Solution (From Previous Example)

Sr. No AD DS IS Symb

ol

Literal Label

1 AD

2 IS =2

3 IS N LOOP

4 IS =1

5 AD

6 AD

7 AD

8 IS LAST

9 DS

10 AD
MR. ANAND GHARU

Machine Structure

MR. ANAND GHARU

Machine Structure

MR. ANAND GHARU

• Consider any hypothetical assembly
language.

• It supports three registers:

• AREG

• BREG

• CREG

MR. ANAND GHARU

• Machine instruction
Format:

MR. ANAND GHARU

• It supports 11 different OPERATIONS.
• STOP
• ADD
• SUB
• MULT
• MOVER
• MOVEM
• COMP
• BC
• DIV
• READ
• PRINT

MR. ANAND GHARU

• In this hypothetical machine,

• First operand is always a CPU register.

• Second operand is always memory
operand.

• READ and PRINT instructions do not use
first operand.

• The STOP instruction has no operand.

MR. ANAND GHARU

• Each symbolic opcode is associated
with machine opcode.

• These details are stored in machine
opcode table(MOT).

• MOT contains:

• 1. Opcode in mneonic form

• 2. Machine code associated with the
opcode.

MR. ANAND GHARU

Symbolic Opcode Machine Code for

opcode

Size of instruction

(in number of

words)

STOP 00 1

ADD 01 1

SUB 02 1

MULT 03 1

MOVER 04 1

MOVEM 05 1

COMP 06 1

BC 07 1

DIV 08 1

READ 09 1

PRINT 10 1

MR. ANAND GHARU

Symbolic Opcode Machine Code for opcode

START 01

END 02

LTORG 03

ORIGIN 04

EQU 05

MR. ANAND GHARU

Sr. NO Declarative Statement Machine Opcode

01 DS 01

02 DC 02

MR. ANAND GHARU

Sr.
No

Symbolic opcode Machine opcode

1 AREG 01

2 BREG 02

3 CREG 03

MR. ANAND GHARU

ASSEMBLER

• An assembly language program can be translated
into machine language.

• It involves following steps:

• 1. Find addresses of variable.

• 2. Replace symbolic addresses by numeric
addresses.

• 3. Replace symbolic opcodes by machine
operation codes.

• 4. Reserve storage for data.

MR. ANAND GHARU

Step 1

• We can find out addresses of variable using LC.
• First identify all variables in your program.
• START 100
• MOVER AREG, X
• MOVER BREG, Y
• ADD AREG, X
• MOVEM AREG, X
• X DC ‘10’

• Y DC ‘15’
• END

MR. ANAND GHARU

Sr. NO LC
1 START 100

2 MOVER AREG, X 100

3 MOVER BREG, Y 101

4 ADD AREG, X 102

5 MOVEM AREG, X 103

6 X DC ‘10’ 104

7 Y DC ‘15’ 105

8 END

Step 1

MR. ANAND GHARU

Sr. No

Name of
Variable(Symbol)

Address

1

X

104

2

Y

105

MR. ANAND GHARU

Step2: Replace all symbolic address
with numeric address.

• START 100

• MOVER AREG, 104

• MOVER BREG, 105

• ADD AREG, 104

• MOVEM AREG, 104
• X DC ‘10’

• Y DC ‘15’

• END

Memory is reserved but no code is
generated.

MR. ANAND GHARU

Step3: Replace symbolic opcodes by
machine operation codes.

LC Assembly Instruction Machine Code

101 MOVER AREG, 104 04 01 104

102 MOVER BREG, 105 04 02 105

103 ADD AREG, 104 01 01 104

104

MOVEM AREG, 104
05 01 104

105

106

107

MR. ANAND GHARU

Question For U

START 102
READ X
READ Y
MOVER AREG, X
ADD AREG, Y
MOVEM AREG, RESULT
PRINT RESULT
STOP
X DS 1
Y DS 1
RESULT DS 1
END

MR. ANAND GHARU

Question For u
START 101
READ N
MOVER BREG, ONE
MOVEM BREG, TERM
MULT BREG, TERM
MOVER CREG, TERM
ADD CREG, ONE
MOVEM CREG, TERM
COMP CREG, N
BC LE, AGAIN
MOVEM BREG, RESULT
PRINT RESULT
STOP
N DS 1
RESULT DS 1
ONE DC ‘1’
TERM DS 1

AGAIN

MR. ANAND GHARU

Assembler

• An Assembler is a translator which
translates assembly language code into
machine language with help of data
structure.

• It has two types

• Pass 1 Assembler.

• Pass 2 Assembler.

MR. ANAND GHARU

General design procedure of assembler

• Statement of Problem

• Data Structure

• Format of databases

• Algorithms

• Look for modularity.

MR. ANAND GHARU

Statement of Problem

• We want to convert assembly language
program into machine language.

MR. ANAND GHARU

Data Structure Used

• Data Structure used are as follows:

• Symbol table

• Literal Table

• Mnemonic Opcode Table

• Pool Table

MR. ANAND GHARU

Format of Databases

• Symbol Table:

• Literal Table:

Name of Symbol address

Literal address

MR. ANAND GHARU

• MOT:

• Pool Table:

Mnemonic Machine Opcode Class Length

Literal Number

MR. ANAND GHARU

Forward Reference Problem

• Using a variable before its definition is called as
forward reference problem.

• E.g.
• START 100
• MOVEM AREG, X
• MOVER BREG, Y
• ADD AREG, Y
• X DC ‘4’
• Y DC ‘5’
• END

MR. ANAND GHARU

• In example variable X, Y are making
forward reference.

• So, We can solve it by using back patching.

MR. ANAND GHARU

Consider another example

MR. ANAND GHARU

Apply LC

MR. ANAND GHARU

Try to convert into machine code

MR. ANAND GHARU

Backpatching
• The operand field of instruction containing a

forward reference is left blank initially.

• Step 1: Construct TII(Table of incomplete
instruction)

MR. ANAND GHARU

• Step 2 : After encountering END statement
symbol table would contain the address of all
symbols defined in the source program.

SYMBOL NAME ADDRESS

X 104

ONE 105

TEN 106

MR. ANAND GHARU

• Now we can generate machine code…

01 03

MR. ANAND GHARU

Pass 1 Assembler

• Pass 1 assembler separate the labels ,
mnemonic opcode table, and operand
fields.

• Determine storage requirement for every
assembly language statement and update
the location counter.

• Build the symbol table. Symbol table is used
to store each label and each variable and its
corresponding address.

• Pass 2 Assembler: Generate the machine code
MR. ANAND GHARU

How pass 1 assembler works?

• Pass I uses following data structures.

• 1. Machine opcode table.(MOT)

• 2. Symbol Table(ST)

• 3. Literal Table(LT)

• 4. Pool Table(PT)

• Contents of MOT are fixed for an assembler.

MR. ANAND GHARU

Observe Following Program

START 200
MOVER AREG, =‘5’
MOVEM AREG, X

L1 MOVER BREG, =‘2’
ORIGIN L1+3
LTORG

NEXT ADD AREG, =‘1’
SUB BREG, =‘2’
BC LT, BACK
LTORG

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’
STOP
X DS 1
END

MR. ANAND GHARU

Apply LC
START 200

MOVER AREG, =‘5’
MOVEM AREG, X

L1 MOVER BREG, =‘2’
ORIGIN L1+3
LTORG

=‘5’
=‘2’

200
201
202

205
206

NEXT ADD AREG, =‘1’ 207

SUB BREG, =‘2’ 208

BC LT, BACK 209

LTORG

=‘1’ 210

=‘2’ 211

BACK EQU L1
ORIGIN NEXT+5

MULT CREG, =‘4’ 212

STOP 213

X DS 1 214

END

=‘4’ 215 MR. ANAND GHARU

Construct Symbol table

index Symbol Name Address

0 X 214

1 L1 202

2 NEXT 207

3 BACK 202

MR. ANAND GHARU

Construct Literal Table

index Literal Address

0 5 205

1 2 206

2 1 210

3 2 211

4 4 215

MR. ANAND GHARU

Pool Table.

• Pool table contains starting literal(index) of
each pool.

Literal number

0

2

4

MR. ANAND GHARU

NOW CONSTRUCT INTERMEDIATE
CODE/MACHINE CODE

• For constructing intermediate code we need
MOT.

MR. ANAND GHARU

MR. ANAND GHARU

MR. ANAND GHARU

Enhanced Machine opcode Table

MR. ANAND GHARU

MR. ANAND GHARU

Example No.2
START 205

MOVER AREG, =‘6’

MOVEM AREG, A

MOVER AREG, A

MOVER CREG, B

ADD CREG, =‘2’

BC ANY , NEXT

LTORG

ADD BREG, B

SUB AREG, =‘1’

BC LT, BACK

STOP

ORIGIN LOOP+2

MULT CREG, B

ORIGIN LAST+1

LOOP

NEXT

LAST

A

BACK

B

END

DS

EQU

DS

1

LOOP

1
MR. ANAND GHARU

• PASS 2 assembler requires two scans of
program to generate machine code.

• It uses data structures defined by pass 1. like
symbol table, MOT, LT.

MR. ANAND GHARU

Design of two pass assembler

• Tasks performed by the passes of a two pass
assembler are as follows:

• Pass 1:

1.Separate the symbol, mnemonic opcode, and
operand fields.
2. Build the symbol table.
3. Perform LC processing.
4. Construct intermediate representation(or IC).
• Pass 2:
1. Synthesize the target program.

MR. ANAND GHARU

Two Pass Assembler

MR. ANAND GHARU

Analysis Phase Vs. Synthesis Phase

MR. ANAND GHARU

Comparison between Pass 1 and Pass2
Sr. No Pass 1 Pass 2

01

It requires only one scan to
generate machine code

It requires two scan to generate
machine code.

02

It has forward reference
problem.

It don’t have forward reference
problem.

03

It performs analysis of
source program and
synthesis of the
intermediate code.

It process the IC to synthesize the
target program.

04

It is faster than pass 2.

It is slow as compared to pass 1.

MR. ANAND GHARU

Pass 1 output and pass 2 output

• Pass 1 assembler generates Intermediate
code.

• Pass 2 assembler generates Machine
code.

MR. ANAND GHARU

INTERMEDIATE

CODE

MR. ANAND GHARU

INTERMEDIATE CODE

• Format for intermediate code:

• For every line of assembly statement, one line
of intermediate code is generated.

• Each mnemonic field is represented as

• (statement class, and machine code)

MR. ANAND GHARU

• Statement class can be:

• 1. IS

• 2. DL/DS

• 3. AD

MR. ANAND GHARU

• So, IC for mnemonic field of above line
is,

• (statement class, machine code)

• (IS, 04) …………………from MOT

MR. ANAND GHARU

• Operand Field:
• Each operand field is represented

as

(operand class,
reference)

• The operand class can be:

• 1. C: Constant
• 2. S: Symbol
• 3. L: Literal
• 4. RG: Register
• 5. CC: Condition codes MR. ANAND GHARU

• E.g. MOVER AREG, X

• For a symbol or literal the reference field
contains the index of the operands entry
in symbol table or literal table.

•

• So IC for above line is:

• (IS, 04) (RG, 01) (S, 0)

MR. ANAND GHARU

• For example…

• START 200

• IC: (AD, 01) (C, 200)

MR. ANAND GHARU

Consider following example
START 200

MOVER AREG, =‘5’ 200

MOVEM AREG, X 201

L1 MOVER BREG, =‘2’ 202

ORIGIN L1+3

LTORG

=‘5’ 205

=‘2’ 206

NEXT

ADD AREG, =‘1’

207
SUB BREG, =‘2’ 208

BC LT, BACK 209

LTORG

=‘1’ 210

=‘2’ 211

BACK

EQU L1

ORIGIN NEXT+5

MULT CREG, =‘4’ 212

STOP 213

X DS 1 214

END

=‘4’ 215 MR. ANAND GHARU

Symbol Table and Literal Table

•
index Symbol Name Address

0 X 214

1 L1 202

2 NEXT 207

3 BACK 202

index Literal Address

0 5 205

1 2 206

2 1 210

3 2 211

4 4 215
MR. ANAND GHARU

Intermediate Code

(AD, 01) (C, 200)

200 (IS, 04) (RG,01) (L, 0)

201 (IS, 05) (RG,01) (S,0)

202 (IS, 04) (RG,02) (L,1)

203 (AD, 03) (C, 205)
205 (DL, 02) (C,5)
206 (DL, 02) (C, 2)

207 (IS,01) (RG, 01) (L, 2)

MR. ANAND GHARU

208 (IS, 02) (RG, 02) (L,3)

209 (IS, 07) (CC, 02) (S, 3)

210 (DL,02) (C,1)

211 (DL,02) (C,2)

212 (AD, 04) (C, 202)

212 (AD, 03) (C, 212)

212 (IS, 03) (RG, 03)(L, 4)

213 (IS, 00)

MR. ANAND GHARU

214 (DL, 01, C, 1)

215 (AD, 02)

215 (DL, 02) (C,4)

MR. ANAND GHARU

I.C LC Machine Code

(AD, 01) (C, 200)

(IS, 04) (RG,01) (L, 0) 200 04 01 205

(IS, 05) (RG,01) (S,0) 201 05 01 214

(IS, 04) (RG,02) (L,1) 202 04 02 206

(AD, 03) (C, 205) 203

(DL, 02) (C,5) 205 00 00 005

(DL, 02) (C, 2) 206 00 00 002

(IS,01) (RG, 01) (L, 2) 207 01 01 210

Intermediate Code and Machine code

MR. ANAND GHARU

I.C LC Machine Code

(IS, 02) (RG, 02) (L,3) 208 02 02 211

(IS, 07) (CC, 02) (S, 3) 209 07 02 202

(DL,02) (C,1) 210 00 00 001

(DL,02) (C,2) 211 00 00 002

(AD, 04) (C, 202) 212

(AD, 03) (C, 212) 212

(IS, 03) (RG, 03)(L, 4) 212 03 03 215

(IS, 00) 213 00 00 000

MR. ANAND GHARU

I.C LC Machine Code

(DL, 01, C, 1) 214

(AD, 02) 215

(DL, 02) (C,4) 215 00 00 004

MR. ANAND GHARU

Variants of Intermediate Code.

• There are two variants of I.C.:

• Variant I

• Variant II.

MR. ANAND GHARU

Variant I

• In Variant I, each operand is represented by a
pair of the form (operand class, code).

• The operand class is one of:

1. S for symbol 2. L for literal

3. C for constant 4. RG for register.

MR. ANAND GHARU

Variant
I

MR. ANAND GHARU

Variant II

• In variant II, operands are processed
selectively.

• Constants and literals are processed. Symbols,
condition codes and CPU registers are not
processed.

MR. ANAND GHARU

Variant II

MR. ANAND GHARU

Error Reporting

• An assembly program may contain errors.

• It may be necessary to report these errors effectively.

• Some errors can be reported at the end of the source
program.

• Some of the typical programs include:

• Syntax errors like missing commas…

• Invalid opcode

• Duplicate definition of a symbol.

• Undefined symbol

• Missing START statement.

MR. ANAND GHARU

Example

• START 100

• MOVER AREG, X

• ADDER BREG, X

• ADD AREG, Y

• X DC ‘2’

• X DC ‘3’

• Z DC ‘3’

• END

MR. ANAND GHARU

• START 100

• MOVER AREG, X

• ADDER BREG, X

• ADD AREG, Y

• X DC ‘2’

Invalid opcode

Undefined symbol Y

• X DC ‘3’

• Z DC ‘3’

• END

duplicate definition of Symbol X.

MR. ANAND GHARU

PASS-1 OF TWO PASS ASSEMBLER

NOTE : Draw pass-1 and pass-2 algorithm and flowchart in your own

understanding.
MR. ANAND GHARU

PASS-1 OF TWO PASS ASSEMBLER

MR. ANAND GHARU

PASS-2 OF TWO PASS ASSEMBLER

MR. ANAND GHARU

PASS-2 OF TWO PASS ASSEMBLER

MR. ANAND GHARU

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

