MET’s Institute of Kngineering

“INTRODUCTION OF SP”

Prepared By
Prof. Anand N. Gharu

(Assistant Professor)
METIOE Computer Dept.

CLASS : TECOMPUTER 2019

SUBJECT : SPOS (SEM-I) 01 JULY 2021
UNIT o v

SYLLABUS :-

Introduction to Systems Programming, Need of Systems
Programming, Software Hierarchy, Types of software:
system software and application software, Machine structure.

Evolution of components of Systems Programming: Text
Editors, Assembler, Macros, Compiler, Interpreter, Loader,
Linker, Debugger, Device Drivers, Operating System.
Elements of Assembly Language Programming: Assembly
Language statements, Benefits of Assembly Language, A
simple Assembly scheme, Pass Structure of Assembler.

Design of two pass Assembler: Processing of declaration
statements, Assembler Directives and imperative statements,
Advanced Assembler Directives, Intermediate code forms,
Pass, | and.Rass Il of two pass Assembler. 4

CONTENTS :-

1. Introduction to Systems Programming
- Need of Systems Programming
- Software Hierarchy

- Types of software: system software and application
software.

2. Evolution of components of Systems Programming:
- Text Editors
- Assembler
- Macros
- Compiler

- Interpreter,

CONTENTS :-
2. Evolution of components of Systems Programming: -

- Loader
- Linker
- Debugger
- Device Driver
- Operating System.
3. Elements of Assembly Language Programming:
- Machine structure

- Assembly Language statements, Benefits of Assembly
Language

- A simple Assembly scheme, Pass Structure of
*Assemister :

CONTENTS :-

4. Design of two pass Assembler:
- Processing of declaration statements
- Assembler Directives and imperative statements
- Advanced Assembler Directives
- Intermediate code forms
- Pass | and Pass Il of two pass Assembler.

® MR. ANAND GHARU

CONTENTS :-

Sample videos :

1. Preprocessor :

https://youtu.be/JZKPEI8J]Z0?list=PLhb/SOMGNUc6Fg7zmBOQOS3y
N2AGOJIREp

2. Compiler execution stages :

https://youtu.be/cJDRShgtTbk?list=PLhb7SOMGNUc6Fg7zmBOOS3y
N2AGOJIREp

® MR. ANAND GHARU

https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp

Introduction

Computer : A programmable device that can store, retrieve,

and process data.(Combination of H/w & S/w)
Hardware : things which we can touch.

Software : things which we cannt touch.(Can only see)

Programming: A programming language I1s a set of
commands, Instructions, and other syntax use to create a
software program.

Data : Information in a form a computer can use
Information : Any knowledge that can be communicated

Introduction

Computer program : Data type specifications and Instructions

for carrying out operations that are used by a computer to solve a
problem.

Machine language : The language, made up of binarycoded
Instructions, that is used directly by the computer

Assembly language : A low-level programming language
In which a mnemonic is used to represent each of the

machine language instructions for a particular computer

Introduction

Source code : Program or set of instructions written In a
high-level programming language

Object code : A machine language version of source
code.

Target code : program output in Machine code (binary
form)

Introduction

Preprocessor :

a preprocessor Is a program that processes Its Input data to
produce output that Is used as Iinput to another program.

Editor : A text editor I1s a type of computer program that edits
plain text. Such programs are sometimes known as "notepad"
software

Compiler : A program that translates a program written in a high-
level language into machine code

Assembler : A program that translates an assembly language
program into machine code :

Introduction

|_oader:-

« A loader 1s a program used by an operating system to load
programs from a

secondary to main memory so as to be executed.

Linker :

a linker Is a computer program that takes one or more object files
generated by a compiler and combines them Into one, executable

program

Debugger :

Debugger IS program which Is used to test program or execute
program in single step execution.

|ntroduction

What Is System?

— System is the collection of various components

Ex:- College Is a system.

College Is a system because It consist of
various components like various departments,
classrooms, faculties and students.

What Is Programming?

— At of designing and implementing the programs.

MR. ANAND GHARU

|Nntroduction

What is System Programming?

— Systems programming involves the development of

the Individual pieces of software that allow the

entire system to function as a single unit.

— Systems programming Involves many layers such

as the operating system (OS), firmware, and the

development environment.
MR. ANAND GHARU

|ntroduction

* |n college system, what Is program?

« A LECTURE can be a program. Because It has
Input and output.

* Input-> The Iinformation that teacher IS
delivering.

* Output-> The knowledge student has been
received.

So system programming Is an art of designing
and implementing system,Rrograms.

Need of System Programming

« System programs provide an environment where
programs can be developed and executed.

* In the simplest sense, system programs also
provide a bridge between the user Interface and
system calls.

* In reality, they are much more complex. For

example, a compiler I1s a complex system program.

MR. ANAND GHARU

Need of System Programming

 The system program serves as a part of the
operating system. It traditionally lies between the
user interface and the system calls.

* The user view of the system is actually defined by
system programs and not system calls because that
IS what they Interact with and system programs are

closer to the user interface.

MR. ANAND GHARU

Need of System Programming

USER

USER INTERFACE

Programs { <> éD <> ¢ QB <> “p"'iﬁ“é'.i.‘l“

SYSTEM CALLS

KERNEL

MR. ANAND GHARU

Need of System Programming

* In the above Image, system programs as well as
application programs form a bridge between
the user Interface and the system calls. So,
from the user view the operating system
observed Is actually the system programs and

not the system calls

MR. ANAND GHARU

Need of System Programming

+ To achiew effective performance of the system.

* To make effective execution of general user program.

+ To make effective utilization of human resources.

* To make available new, better facilities.

MR. ANAND GHARU

Software Hierarchy

A software hierarchy Is the combination of product, version,
and release (or feature) that represents an item of software in a

database or knowledge base. The product Is the root of the
hierarchy.

« Software

1. System Software

- Operating System

- System Support

- System Development

2. Application Software

- General Purpose

. ~ MR. ANAND GHARU
. Anonblication Snecific

Software Hierarchy

Software Hierarchy

Application Software

Operating System System Development General Purpose Application Specific

System Support

What Is Software ?

» Software Is collection of many programs

* Two types of software

—System software: These programs assist
general user application programs

» EX:- Operating System , Assembler etc.

— Application software

* These are the software developed for the specific
goal.

« EX. Media Player,"”Adobe Reader etc

System software Vs Application software

System Software

Dperating

Systern Hardware Utilties

CPU disks, mouse
rinter, etc.

MR. ANAND GHARU

System software Vs Application software

Sr.
NoO

System Software

System software Is used for operating
computer hardware.

Application Software

Application software is used by user to
perform specific task.

System softwares are installed on the
computer when operating system Is
Installed.

Application softwares are installed
according to user’s requirements.

In general, the user does not interact with
system software because i1t works in the
background.

System software can run independently. It
provides platform for running application
softwares.

In general, the user interacts with
application sofwares.

Application software can’t run
independently. They can’t run without the
presence of system software.

Some examples of system softwares are

compiler, assembler, debugger, driver, etc,
MR. ANAN

Some examples of application softwares
are word processor, web browser, media

Cplayeretc.

System software Vs Application software

ilro' System Software Application Software
1. It is general purpose software It Is specific purpose software

2. Written in low level language Written in High level language

3. [Small in size Large in size

4. Complex to design and implement Easy to design and implement

Some examples of application softwares
Some examples of system softwares are

compiler, assembler, debugger, driver, gtc, o word processor, web browser, media
| ’ VIR, ANANCplayex&te.

' System Programming Components

- Text Editors

- Assembler

- Macros

- Compiler

- Interpreter

- Loader

- Linker

- Debugger

- Device Driver

- Operating System.

® MR. ANAND GHARU ®

Text Editors

Editor 1s a computer program that allows a user to

create and revise a document..

A text editor is a type of program used for editing plain

text files.

With the help of text editor you can write your

program(e.g. C Program or Java Program).

Text editor’s example I1s Notepad.

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file

Types of Text EdIitors

1. Line editor : This code editor edits the file line by
line. You cannot work on a stream of lines using the

line editor. Example of a line editor Is teleprinter.

2. Stream editor : In this type of editors, the file Is
treated as continuous flow or sequence of characters
Instead of line numbers, which means here you can
type paragraphs.

Ex : Sed editor in UNIX

MR. ANAND GHARU

Types of Text Editors

3. Screen editors : In this type of editors, the user Is able
to see the cursor on the screen and can make a copy, cut,

paste operation easily. It Is very easy to use mouse pointer.
EX : vi, emacs, Notepad

4. Word Processor : Overcoming the limitations of screen
editors, It allows one to use some format to insert images,
files, videos, use font, size, style features. It majorly

focuses on Natural language.

|_oaders

» A loader Is a program that takes object code as

Input and prepares them for execution.
* |t Initiates the execution.
* Functions:
1. Allocation
2. Linking
3. Relocation

4. Loading

Functions of Loader

Allocation : Loader allocates space for programs in main
memory

Linking- which combines two or more separate object
programs (by Linker)

Relocation - which modifies the object program so that It
can be loaded at an address different from the location
originally specified - (Linking Loader) and data into main
memory

LLoading - which allocates memory location and brings the

] . MR. ANAND GHARU]
object program Into memory for execution - (Loader)

GENERAL LOADING SCHEME

Program modules A and B are loaded in memory after linking. It is
ready for execution

7

Modul
A

MoBduIe V [

GeneralVoading'Scheme

RELOCATION

Case I: Address assigned to Prog. A and F1 () when they translated to
memory 0

Drawback- a lot of storage area
1§ wasted

b

/

400

300

Fig.: General Loading scheme
MR. ANAND GHARU

RELOCATION

Case II: These two module cannot co-exislicla_t same storage locations.
alll

Storage

100

230

100
200
I Relocated address given
Translation time by the loader

acldress
Fig.: Relocation tojgvoid adcressoonflict or storage waste

RELOCATION

Translation Relocated
time address address given
by the loader

- o 123 3 ' i nflict
(S&Q’Fig’ 122: (ase Lof reloca fion Fig. 1.2.3 : Relocation to avc:ned address conflic
MR. ANAND GHARE/Storage was

Assembler

 Assembler Is a translator which translates
assembly language program Into machine
language.

Source Code I > Object Code
(Assembly Language) (Machine Language)

MR. ANAND GHARU

Microprocessor

To memory and
Input/ Output

PA = SegX |OH
+ offset

6-Byte
pre-fetch
queue

General

Purpose
CH | ' CL |
EDHE DI 8;2 Registers

!---—-——-------—-—-------\—--—------—-d

Block Diag_'ﬁam of 8086 Microprocessor

Electronics Desk

Macro & Macroprocessor

Macro allows a sequence of source language code to be defined once and

then referred many times.

“ A macro Is a seguence of Instructions, assigned by a name and could
be used anywhere in the program ”

In NASM, macros are defined with %omacro and %endmacro directives.

The macro begins with the %macro directive and ends with the

%endmacro directive.

Syntax:
% macro macro_name number_of params

<macro body>
%endmacro

MR. ANAND GHARU

Macro & Macroprocessor

* A macro processor takes a source with macro definition and macro calls
and replaces each macro call with its body.

....... Macro s
------- — Preprocessor MR T
Program with Target
macro definitions Program
and call Program

without
macro

Figure: A Schematic of a macro preprocessor
MR. ANAND GHARU

Macro & Macroprocessor

* How Macroprocessor works :

ADD AREG. X In the above program, the sequence
REG ADD AREG, X
ADD BREG, X ADD BREG, X

occurs three times. A macro allows us to attach a name to this

AREG. X sequence and to use this name in its place.

ADD , -

ADD BREG, X . MACRO
e MAcro name mymacro
ADD AREG, X ADD BREG, X
ADD BREG, X

—_— End of macro definition MEND

MR. ANAND GHARU

booTTTorR g vl WL T MY'
Orginal Program ~~~ Program with macr0. --

PREP MPILERS,
ASS INKERS

Skeletal Source Program

Preprocessor

Try for

myprog.cC

Target Assembly
Program

Relocatable Object

Code Absolute Machine Code

Libraries and
Relocatable
Object Files

42

Compiler
Compiler iIs a translator which converts the high

level language into low level language.

Benefits of writing a program In a high level
language
Increases productivity: It Is very easy to write a

program In a high level language.

Machine Independence: A program written in a

high level language is‘imachine independent.

COMPILERS

* “Compilation”

— Translation of a program written in a source
language into a semantically equivalent program
| written in atarget language

Compiler

Phases of Compiler

SOURCE PROGRAM

~ LEXICAL ANALYSER |

i SYNTAX ANALYSER ll

 SEMANTIC ANALYSER |

ERROR HANDLER J

—

—— Mmﬁﬁ INTERMEDIATE CODE

| CODEOPTIMIZIER |

- CODE GENERATOR |

MR. AMGENEDG

ARU

—

Example : https://youtu.be/P1bQUyl__t0

PHAS MPILER

-
aabh

.

Code in High Level Language

'..Il‘-t l-fLL

l‘.t’(nl L | l‘., 1] (l

* Ao arcd Svintax 1 rec Q

— e o — e <R Codc 'J/’:‘)__;,/.

Generation PN
¢ lincar srcprescntanon =
of syt frroee
Code Optimization

¢ ()|~tl mizocd U ode

Code Generation

I ! AFZer prrogram

Code in Machine Language

Back IEnd

https://youtu.be/P1bQUyl__t0

https://youtu.be/P1bQUyl__t0

Phases of Compiler

* Lexical Analysis :

Lexical analyzer phase Is the first phase of compilation process. It takes source
code as input. It reads the source program one character at a time and converts it
Into meaningful lexemes. Lexical analyzer represents these lexemes in the form

of tokens.

« Syntax Analysis :

Syntax analysis Is the second phase of compilation process. It takes tokens as
Input and generates a parse tree as output. In syntax analysis phase, the parser

checks that the expression made by the tokens iIs syntactically correct or not.

Phases of Compiler

« Semantic Analysis :

Semantic analysis Is the third phase of compilation process. It c

the parse tree follows the rules of language. Semantic analyzer

necks whether

Keeps track of

identifiers, their types and expressions. The output of semantic analysis phase Is

the annotated tree syntax.

 |Intermediate Code Generation :

In the Intermediate code generation, compiler generates the source code into the

Intermediate code. Intermediate code Is generated between t

language and t

ne high-level

ne machine language. The intermediate code should

In such a way t

be generated

nat you can easily translate it into the target machine code.

Phases of Compiler

« Code Optimization :

Code optimization Is an optional phase. It Is used to improve the intermediate
code so that the output of the program could run faster and take less space. It
removes the unnecessary lines of the code and arranges the sequence of

statements in order to speed up the program execution.

« Code Generation :

Code generation i1s the final stage of the compilation process. It takes the
optimized iIntermediate code as input and maps It to the target machine
language. Code generator translates the intermediate code into the machine code

of the specified computer.

Example : c=a+h*5; .

l Intermediatecode generator
Lexical analyzer l
<id, 1><=><id, 2>l #><id, 3><"><5> t1 = inttoftoat(5)
I t2=id; " t1
Syntax analyzer t3 =id+ t2
| ids= 13
id, 1 FN Code optimizer
id3 s t1=id; * (5)
l id=id, " t1
Semantic analyzer l
; Code generator
|d,1/ | "'
A LDF R2, id;
G2 X MULF R2, #5.0
id,3 inttofl LDF R1, id2
‘ ADDF R1,R2

MR ANAND GHARU STF ids, R1

» “Yterpretation”

— Performing the operations implied by the

Source program

Source
Program

Interpreter

Error Messages

MRANAND - GHAR

ol

U

Ahead Of Time compilation
(usually C, C++, Golang...)

Interpretation /
Just In Time compilation
(usually Java. Ruby., Python., PHP...)

Development

Source code

Machine code

Development

Source code

Bytecode

Runtime

- -

- Machine code

l

CcPuU

Runtime

——» Input / Output

MR. ANAND

Bytecode

Interpreter
(virtual machine)

[S— Machine code

!

CPU

Difference between Compiler and Interpreter

No Compiler

1 Compiler Takes Entire program as
mput

”

Intermediate Object Code is
Generated

3 Conditional Control Statements are
Executes faster

4 Memory Requirement : More
(Since Object Code is Generated)

5 Program need not be compiled every
time

6 | Errors are displaved after entire
program is checked

S0Z x S505

Interpreter

Interpreter Takes Single instruction as
mput .

No Intermediate Object Code is

Generated

Conditional Control Statements are
Executes slower

Memory Requirement is Less

Every time higher level program is
converted into lower level program

Errors are displayved for every
instruction interpreted (if anv)

7 Example : C Compiler MR. ANAND Exsaivigile : BASIC

Debugger

Debugging tool helps programmer for testing

and debugging programs.
It provides some facilities:
Setting breakpoints.

Displaying values of variables.

MR. ANAND GHARU

Device driver

Debugging tool helps programmer for testing

and debugging programs.
It provides some facilities:
Setting breakpoints.

Displaying values of variables.

MR. ANAND GHARU

Operating system

* |t Is system software which provides interface

between user and hardware(computer system)

MR. ANAND GHARU

AssembDbly
Language

ASSEMBLY LANGUAGE PROGRAMMING

SOURCECODE EXECUTABLE CODE
(i Assembly ASSEMBLER - [ie Machine
Language) ‘ Language)

® MR. ANAND GHARU

Assembly Language

Assembly language Is low level language.
An assembly language Is machine dependent.
It differs from computer to computer.

Writing programs in assembly language Is very easy
as compared to machine(binary) language.

MR. ANAND GHARU

Assembly Language Programming
(ALP)

Assembly language is a kind of low level programming
language, which uses symbolic codes or mnemonics as
Instruction.

Some examples of mnemonics include ADD, SUB, LDA,
and STA that stand for addition, subtraction, load
accumulator, and store accumulator, respectively.

For processing of an assembly language program we
need a language translator called assembler

Assembler- Assembler is a Translator which translates
assembly language code into machine code

Position of Assembler

Source Code (.c, .cpp, .h)l
Preprocessing Step 1: Preprocessor (cpp)
Include Header, Expand Macro ('.i, .ii)l
Compilation Step 2: Compiler (gcc, g++)
Assembly Code (.s)l —
Assemble Step 3: Assembler (as)
Machine Code (.0, .0b3) |
Static Library (.11b, .a)—» Linking Step 4: Linker (1d)
Executable Machine Code (.exe)l -

Editoror IDE ' Step 1: Write Source Codes
Source codes (.c), Headers (.h) l

Preprocessor | Step 2: Preprocess

Included files, replaced symbolsI

Compiler Step 3: Compile > Build
Object codes (.ob3, .o)I

Static Libraries (.1ib, .a) —» Linker Step4: Link Edit
Executable Code (. exe)l
Shared Libraries (.d11, .so)—» Loader Step 5: Load h
I— > Run
Input —» CPU Step 6: Execute

r—

Output

Applications of Assembly Language

e assembly language is used for direct hardware

manipulation, access to specialized processor
instructions, or to address critical
performance issues.

* Typical uses are device drivers (CD, HDD),
low-level embedded systems (Keyboard, water
tank indicator) and real-time systems
(computer, notepad).

Advantage and Disadvantages of ALP

Advantages-

Due to use of symbolic codes (mnemonics), an assembly program
can be written faster.

It makes the programmer free from the burden of remembering the
operation codes and addresses of memory location.

It is easier to debug.

Disadvantages-

it is a machine oriented language, it requires familiarity with
machine architecture and understanding of available instruction
set.

Execution in an assembly language program is comparatively time
consuming compared to machine language. The reason is that a
separate language translator program is needed to translate
assembly program into binary machine code

Machine Instruction in Assembly Language

 Machine Instructions are commands or programs
written in machine code of a machine (computer) that it
can recognize and execute.

1. A machine instruction consists of several bytes in memory that

tells the processor to perform one machine operation.

2. The processor looks at machine Instructions in main memory one

after another, and performs one machine operation for each

machine instruction.

3. The collection of machine instructions in main memory Iis called a

machine language program.

Machine Instruction in Assembly Language

The general format of a machine instruction is

[Label:] Mnemonic [Operand, Operand] [; Comments]

1. Brackets indicate that a field is optional

2. Label 1s an identifier that is assigned the address of the first byte of the instruction
In which it appears. It must be followed by «:”

3. Inclusion of spaces Is arbitrary, except that at least one space must be inserted; no
space would lead to an ambiguity.

4. Comment field begins with a semicolon “ ;

Example:

Here: MOV R5#25H: load 25H into R5

MR. ANAND GHARU

e Machine instruction

Format:
opcode register operand Iemory operand

MR. ANAND GHARU

Assembly language programming
Terms:

LLocation Counter: (LC) points to the next
Instruction.

Literals: constant values
Symbols: name of variables and labels

Procedures: methods/ functions

MR. ANAND GHARU

AssemDbly language Statements:

* Imperative Statements:

 Declarative/Declaration Statements:

o Assembler Directive:

MR. ANAND GHARU

Imperative Statements

Imperative means mnemonics
These are executable statements.

Each imperative statement indicates an action to
be taken during execution of the program.

=9 MOVER
" BREG. X
STOP

READ X
ADD AR%{Q’N&ND GHARU

Declarative Statements

Declaration statements are for reserving
memory for variables.

We can specify the Initial value of a variable.
It has two types:
DS // Declare Storage

DC // Declare Constant

MR. ANAND GHARU

DS(Declare Storage):

* Syntax:

e [Label] DS <Constant specifying size>
e Eg. XDS1

DC (Declare Constant):

Syntax:
[Label] DC <constant specifying value>

E.g Y DC ‘%

Assembler Directive

Assembler directive instruct the assembler
to perform certain actions during assembly
of a program.

Some assembler directive are:
START <address constant>

END

MR. ANAND GHARU

Advanced Assembler Directives
e 1. ORIGIN
e 2. EQU

* 3. LTORG

MR. ANAND GHARU

1.

BR W N

6
7

8.

Sample Assembly Code

START 100

. XDC10’
.YDS 1
END

It is an AD statement because it
has Assembler directive START

MOVER AREG, X Itisan IS because it starts with mnemonic.
MOVER BREG,Y

. ADD AREG,Y

. MOVEM AREG, X

It is an DS/ DL statement because it has DC
It is an DS/ DL statement because it has DS

MR. ANAND GHARU

Identify the types of

2

8 MR. ANAND GHARU

Identify the types of

1 AD

2 IS
3 IS
4 IS
5 IS
6 DS
I DS

8 MR. ANAND GHARU AD

Advanced Assembler Directives

* ORIGIN

 EQU

* LTORG

MR. ANAND GHARU

Advanced Assembler Directives
Origin :

The origin directive tells the assembler where to load Instructions and

data into memory.

SYNTAX::

ORIGIN

MR. ANAND GHARU

Advanced Assembler Directives

Equate:

The EQU directive Is used to equate a name with an
expression, symbolic address,

or number. Whenever this name Is used as a symbol, 1t Is
replaced.

We might do something, such as the following, which makes the
symbol R12 to be equal to 12, and replaced by that value when
the assembler Is run.

E.G. R12 EQU 12

MR. ANAND GHARU

Advanced Assembler Directives

LTORG :

The LTORG directive Instructs the assembler to assemble the

current literal pool immediately.

The Literal Pool contains a collection of anonymous constant

definitions, which are generated by the assembler.

The LTORG directive defines the start of a literal pool.
Syntax :

LTORG
MR. ANAND GHARU

How LC Operates?

sNO | lc

1 START 100

2 MOVER AREG, X
3 MOVER BREG, Y
4 ADD AREG, BREG
5 MOVEM AREG, X
6 X DC ‘10’

7 Y DC ‘15’

8 END

MR. ANAND GHARU

How LC Operates?

sNO_ |l

1 START 100

2 MOVER AREG, X 100
3 MOVER BREG, Y 101
4 ADD AREG, BREG 102
5 MOVEM AREG, X 103
6 X DC ‘10’ 104
I Y DC ‘1%’ 105
8 END

MR. ANAND GHARU

ldentify symbol, literals, AD, DS, IS,
Symbol, Literal Label

 START 100

* MOVER BREG, =2’

* LOOP MOVER AREG, N
* ADD BREG, =1’

* ORIGIN LOOP+5

* LTORG

* ORIGIN NEXT +2
 LAST STOP

* N DC'Y

* END

MR. ANAND GHARU

Solution (From Previous Example)

--
ol

1

2 1S =2

3 1S N LOOP
4 1S =1

5 AD

6 AD

/ AD

8 1S LAST
9 DS

10 AD

MR. ANAND GHARU

Machine Structure

1/Q /O a'% g
pProcessor processor
Teletype
Card —
read/punch .

Disk
or drum
MR. ANAND GHARU

Machine Structure

——————— -1
I OTHER IJO -
= CHANNEL IF I.é >
L ANy g

lfﬂ CHAMMEL |e

pd

MEMORY CONTROLLER

—>

MEMORY ADDRESS

REGISTER { MIAR)

MEMORY BUFFER

REGISTER { MIBR)

LOCATION COUNTER {LC)

INSTRUCTION REGISTER {IR)

WORKING REGISTER {IR)

CPU

---------1

r
|
|
I
I
|
I
I
|
|
I
I
|
I
I
|
|
I
I
|
|
I
I
|
I
I
|
|
I
I
|
|
I
I
|
I
I
|
|
I
I
!_

v DATA

INSTRUCTION <€ —

INTERPRETER *‘

GENERAL PURPOSE REGISTER {GR)

N
)
%
iigt?
3

r I I S . _L
: OTHER CPUs IF
1 ANY

h_______

p—

Consider any hypothetical assembly
language.

It supports three registers:
AREG
BREG
CREG

e Machine instruction

Format:
opcode register operand Iemory operand

MR. ANAND GHARU

It supports 11 different OPERATIONS.
STOP
ADD
SUB
MULT
MOVER
MOVEM
COMP
BC

DIV
READ
PRINT

In this hypothetical machine,
First operand is always a CPU register.

Second operand is always memory
operand.

READ and PRINT instructions do not use
first operand.

The STOP instruction has no operand.

Each symbolic opcode is associated
with machine opcode.

These details are stored in machine
opcode table(MOQOT).

MOT contains:
1. Opcode in mneonic form

2. Machine code associated with the
opcode.

Symbolic Opcode Machine Code for |Size of Iinstruction

opcode (in number of
words)

STOP 00 1
ADD 01 1
SUB 02 1
MULT 03 1
MOVER 04 1
MOVEM 05 1
COMP 06 1
BC 07 1
DIV 08 1
READ 09 1
PRINT 10 1

MR. ANAND GHARU

Symbolic Opcode Machine Code for opcode

START 01
END 02
LTORG 03
ORIGIN 04
EQU 05

MR. ANAND GHARU

Declarative Statement Machine Opcode

01 DS 01

02 DC 02

MR. ANAND GHARU

E Symbolic opcode Machine opcode

1 AREG 01
2 BREG 02
3 CREG 03

MR. ANAND GHARU

ASSEMBLER

An assembly language program can be translated
into machine language.

It involves following steps:
1. Find addresses of variable.

2. Replace symbolic addresses by humeric
addresses.

3. Replace symbolic opcodes by machine
operation codes.

4. Reserve storage for data.

Step 1

We can find out addresses of variable using LC.
First identify all variables in your program.
START 100

MOVER AREG, X

MOVER BREG, Y

ADD AREG, X

MOVEM AREG, X

X DC ‘10’

Y DC‘15’

END

Step 1
s,no . lc

1 START 100

2 MOVER AREG, X 100
3 MOVER BREG, Y 101
4 ADD AREG, X 102
5 MOVEM AREG, X 103
6 X DC ‘10’ 104
7 Y DC ‘15’ 105
8 END

MR. ANAND GHARU

Name of Address

Variable(Symbol)

1 X 104

2 Y 105

MR. ANAND GHARU

Step2: Replace all symbolic address
with numeric address.

START 100
MOVER AREG, 104

MOVER BREG, 105
ADD AREG, 104
MOVEM AREG, 104

X DC 110’ o Memory is reserved but no code is
Y DC 115’ — generated.
END

Step3: Replace symbolic opcodes by
machine operation codes.

Assembly Instruction Machine Code

101 MOVER AREG, 104 04 01 104
102 MOVER BREG, 105 04 02105
103 ADD AREG, 104 01 01 104
104 05 01104

MOVEM AREG, 104

105
106
107

MR. ANAND GHARU

Question For U

START 102

READ X

READ Y

MOVER AREG, X
ADD AREG, Y
MOVEM AREG, RESULT
PRINT RESULT
STOP

XDS1

YDS1
RESULTDS 1
END

Question For u

START 101
READ N
MOVER BREG, ONE
MOVEM BREG, TERM
AGAIN MULT BREG, TERM
MOVER CREG, TERM
ADD CREG, ONE
MOVEM CREG, TERM
COMP CREG, N
BC LE, AGAIN
MOVEM BREG, RESULT
PRINT RESULT
STOP
NDS1
RESULT DS 1
ONE DC ‘Y’
TERM DS 1

Assembler

An Assembler is a translator which
translates assembly language code into
machine language with help of data
structure.

It has two types
Pass 1 Assembler.
Pass 2 Assembler.

MR. ANAND GHARU

General design procedure of assembler

e Statement of Problem
* Data Structure

* Format of databases

* Algorithms

* Look for modularity.

MR. ANAND GHARU

Statement of Problem

* We want to convert assembly language
program into machine language.

MR. ANAND GHARU

Data Structure Used

Data Structure used are as follows:

Symbol table
Literal Table

Mnemonic Opcode Table

Pool Table

MR. ANAND GHARU

Format of Databases

* Symbol Table:

e Literal Table:

MR. ANAND GHARU

 MOT:
Vnemoric | Machine Ocode Class —Lengih

e Pool Table:

Literal Number

MR. ANAND GHARU

Forward Reference Problem

Using a variable before its definition is called as
forward reference problem.

E.g.

START 100
MOVEM AREG, X
MOVER BREG, Y
ADD AREG, Y
XDC4

YDC'Y

END

MR. ANAND GHARU

* |n example variable X, Y are making
forward reference.

* So, We can solve it by using back patching.

Consider another example

START 100

MOVER AREG, X
L1 ADD BREG, ONE

ADD CREG, TEN

STOP
X DC 5+
ONE DC L
TEN DC 10"

END

MR. ANAND GHARU

L1

ONE
TEN

Apply LC

START
MOVER
ADD
ADD
STOP
DC

DC

DC

END

100

AREG, X
BREG, ONE
CREG, TEN

MR. ANAND GHARU

100
101
102
103
104

105
106

Try to convert into machine code

START 100
MOVER AREG, X 100 041 ___
L1 ADD BREG, ONE 005 S) O
ADD CREG, TEN 102 06 3 ___
STOP 103 00 0 000
X DC 'Y 104
ONE DC Y 105
TEN DC 10’ 106
END

MR. ANAND GHARU

Backpatching

* The operand field of instruction containing a
forward reference is left blank initially.

» Step 1: Construct Tll(Table of incomplete
instruction)

Instruction Address Symbol Making a forward reference

100 X
101 ONE
102 TEN

MR. ANAND GHARU

e Step 2 : After encountering END statement
symbol table would contain the address of all
symbols defined in the source program.

SYMBOL NAME ADDRESS

X 104
ONE 105
TEN 106

MR. ANAND GHARU

* Now we can generate machine code...

04 1 104
01 2 105

o1 106
00 0 000

MR. ANAND GHARU

Pass 1 Assembler

Pass 1 assembler separate the labels,
mnemonic opcode table, and operand

fields.

Determine storage requirement for every
assembly language statement and update
the location counter.

Build the symbol table. Symbol table is used
to store each label and each variable and its
corresponding address.

Pass 2 Assembler: Generate the machine code

How pass 1 assembler works?

Pass | uses following data structures.
1. Machine opcode table.(MOT)

2. Symbol Table(ST)

3. Literal Table(LT)

4. Pool Table(PT)

Contents of MOT are fixed for an assembler.

MR. ANAND GHARU

Observe Following Program

START 200

MOVER AREG, =5’

MOVEM AREG, X
L1 MOVER BREG, =2’

ORIGIN L1+3

LTORG

NEXT ADD AREG, =1’
SUB BREG, =2’
BC LT, BACK
LTORG

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =4’
STOP

XDS1

END

MR. ANAND GHARU

Apply LC

START 200
MOVER AREG, =‘5’ 200
MOVEM AREG, X 201
L1 MOVER BREG, =2’ 202
ORIGIN L1+3
LTORG
=‘5’ 205
=2’ 206
NEXT ADD AREG, =‘1’ 207
SUB BREG, =2’ 208
BC LT, BACK 209
LTORG
=‘1’ 210
=2’ 211
BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’ 212
STOP 213
XDS1 214
END

=4 ME. ANAND GHARU

Construct Symbol table

“index | Symbol Name

0 X 214
1 L1 202
2 NEXT 207
3 BACK 202

MR. ANAND GHARU

Construct Literal Table

index Literal _Address

0 5 205
1 2 206
2 1 210
3 2 211
4 4 215

MR. ANAND GHARU

Pool Table.

* Pool table contains starting literal(index) of
each pool.

Literal number

0
2

a4

MR. ANAND GHARU

NOW CONSTRUCT INTERMEDIATE
CODE/MACHINE CODE

* For constructing intermediate code we need
MOT.

MR. ANAND GHARU

Variant |

i , Imperative statements Instruction
Declaration | Instruction
(mnemonics) code
statement code

DC 01 STOP
DS 02 ADD 01
SUB 02
MULT 03
START 01 SR =
END 02 COMP 06
ORIGIN 03 e 2
EQU 04 Ll g
LTORG 05 i i
PRINT 10
JUMP 11

MR. ANAND GHARU

Variant |

Condition | Instruction Register Instruction
code code

1 AREG
LE 2 BREG 2
EQ 3 CREG 3
GT 4 DREG 4
GE 5
ANY 6

*First operand is represented by a single digit number which is a code for a register or
the condition code

*The second operand, which is a memory operand, is represented by a pair of the form
(operand class, code)

*Where operand class is one of the C, S and L standing for constant, symbol and literal
For a constant, the code field contains the internal representation of the constant itself.
Ex: the operand descriptor for the statement START 200 is (C,200).

For a symbol or literal, the code field contains the ordinal number of the operand’s
entry in SYMTAB or LITTAB MR. ANAND GHARU

Enhanced Machine opcode Table

Table 1.10.1 : An enhanced machine opcode table (MOT)

Mupemonic opcode Class Opcode Length

0 STOP IS 00 1

1 ADD IS 01 1

2 SUB IS 02 1

3 MULT IS 03 1

4 MOVER IS 04 1

5 MOVEM IS 05 1

6 COMP IS 06 1

7 BC IS 07 1

8 DIV IS 08 |

9 READ IS 09 1

10 PRINT IS 10 1
11 START AD 01 s
12 END AD 02 sa
13 ORIGIN AD 03 =
14 EQU AD 04 —
15 LTORG AD 05 -
16 DS DL 01 -
17 DC DL 02 :
18 AREG RG 01 =

19 BREG RG 02

20 CREG RG 03 :
21 EQ MECANAND GHARU -

MR. ANAND GHARU

'W -~ Class ~ Opeode | = Length
e T CC 02 QA

o CC > -

LE IS I S— -

— GE @ I 4

- NE = CC 06 i

—w @ | w1 -

Example No.2
START 205

MOVER AREG, =6’
MOVEM AREG, A
LOOP MOVER AREG, A
MOVER CREG, B
ADD CREG, =2’
BC ANY, NEXT
LTORG
ADD BREG, B
NEXT SUB AREG, =1’
BC LI, BACK
STOP
ORIGIN LOOP+2
MULT CREG, B

ORIGIN LAST+1

LAST

A DS 1
BACK EQU LOOP
B DS 1

END MR. ANAND GHARU

e PASS 2 assembler requires two scans of
program to generate machine code.

* |t uses data structures defined by pass 1. like
symbol table, MOT, LT.

Design of two pass assembler

* Tasks performed by the passes of a two pass
assembler are as follows:

e Pass 1:

1.Separate the symbol, mnemonic opcode, and
operand fields.

2. Build the symbol table.
3. Perform LC processing.

4. Construct intermediate representation(or IC).
* Pass 2:

1. Synthesize the target program.

MR. ANAND GHARU

Source
—

Program

Two Pass Assembler

Data structures

Pass I

<

Intermediate code

>

Target
Pass I1 Program
— Data access

- -» Control transfer

MR. ANAND GHARU

Analysis Phase Vs. Synthesis Phase

mnemonic opcode length
ADD 01 1
SUB 02 1
/ Mnemonics table \
Source 3! Analysis Phase p=====mmeecccccccccccaa- > Synthesis Phase > Target
Program Program

\ symbol address

AGAIN 104
N 113
Symbol Table

Fig.-Design.oft.assembler

Comparison between Pass 1 and Pass2

I S N

01 It requires only one scan to It requires two scan to generate
generate machine code machine code.

02 It has forward reference It don’t have forward reference
problem. problem.

03 It performs analysis of It process the IC to synthesize the
source program and target program.

synthesis of the
intermediate code.

04 It is faster than pass 2. It is slow as compared to pass 1.

MR. ANAND GHARU

Pass 1 output and pass 2 output

* Pass 1 assembler generates Intermediate
code.

* Pass 2 assembler generates Machine
code.

MR. ANAND GHARU

INTERMEDIATE
CODE

INTERMEDIATE CODE

Format for intermediate code:

For every line of assembly statement, one line
of intermediate code is generated.

Each mnemonic field is represented as

(statement class, and machine code)

MR. ANAND GHARU

Statement class can be:
1. 1S

2. DL/DS

3. AD

* E.g. MOVER AREQG, X

|

\
Mnemonic field Operand field

e So, IC for mnemonic field of above line
IS,

» (statement class, machine code)
* (IS, 04) .covvevveereinnenn from MOT

MR. ANAND GHARU

Operand Field:
Each operand field is represented
as

(operand class,
reference)

The operand class can be:

1. C: Constant

2.S: Symbol

3. L: Literal

4. RG: Register

5. CC: Condition codes

F.o. MOVER AREG, X

For a symbol or literal the reference field
contains the index of the operands entry
in symbol table or literal table.

So IC for above line is:
(1S, 04) (RG, 01) (S, 0)

* For example...

e START 200
. IC: (AD, 01) (C, 200)

Consider following example

START 200
MOVER AREG, ='5" 200

MOVEM AREG, X 201
L1 MOVER BREG, =2 202

ORIGIN L1+3
LTORG
=5’ 205
=12’ 206
NEXT ADD AREG, =1’ 207
SUB BREG, =2’ 208
BC LT, BACK 209
LTORG
=1’ 210
=2 211
BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’ 212
STOP 213
X DS 1 214
END

=4 MER. ANAND GHARU

Symbol Table and Literal Table

0 X 214
1 L1 202
2 NEXT 207
3 BACK 202
index ——[teral [address
0 5 205
1 2 206
2 1 210
3 2 211
4 4 215

MR."ANAND GHARU

Intermediate Code

(AD, 01) (C, 200)

200 (IS, 04) (RG,01) (L, 0)
201 (IS, 05) (RG,01) (S,0)
202 (IS, 04) (RG,02) (L,1)
203 (AD, 03) (C, 205)

205 (DL, 02) (C,5)
206 (DL, 02) (C, 2)

207 (1S,01) (RG, 01) (L, 2)

208 (IS, 02) (RG, 02) (L,3)
209 (IS, 07) (CC, 02) (S, 3)
210 (DL,02) (C,1)

211 (DL,02) (C,2)

212 (AD, 04) (C, 202)

212 (AD, 03) (C, 212)

212 (IS, 03) (RG, 03)(L, 4)
213 (IS, 00)

214 (DL, 01, C, 1)
215 (AD, 02)
215 (DL, 02) (C,4)

Intermediate Code and Machine code

(AD, 01) (C, 200)

(1S, 04) (RG,01) (L, 0) 200 0401 205
(1S, 05) (RG,01) (S,0) 201 0501 214
(1S, 04) (RG,02) (L,1) 202 04 02 206
(AD, 03) (C, 205) 203

(DL, 02) (C,5) 205 00 00 005
(DL, 02) (C, 2) 206 00 00 002
(15,01) (RG, 01) (L, 2) 207 0101 210

MR. ANAND GHARU

(1S, 02) (RG, 02) (L,3)

(1S, 07) (CC, 02) (S, 3)

(DL,02) (C,1)

(DL,02) (C,2)

(AD, 04) (C, 202)

(AD, 03) (C, 212)

(1S, 03) (RG, 03)(L, 4)

(1S, 00)

208

209

210

211

212

212

212

213

0202 211

07 02 202

00 00 001

00 00 002

03 03 215

00 00 000

MR. ANAND GHARU

(DL, 01, C, 1) 214
(AD, 02) 215
(DL, 02) (C,4) 215 00 00 004

MR. ANAND GHARU

Variants of Intermediate Code.

e There are two variants of I.C.:
e Variant |
 Variant Il.

MR. ANAND GHARU

Variant |

* |[n Variant |, each operand is represented by a
pair of the form (operand class, code).

 The operand class is one of:
1. S for symbol 2.L for literal
3. C for constant 4. RG for register.

Variant

MR. ANAND GHARU

Variant ||

* |[n variant Il, operands are processed
selectively.

* Constants and literals are processed. Symbols,
condition codes and CPU registers are not

processed.

Variant Il

MR. ANAND GHARU

Error Reporting

An assembly program may contain errors.
It may be necessary to report these errors effectively.

Some errors can be reported at the end of the source
program.

Some of the typical programs include:
Syntax errors like missing commas...
Invalid opcode

Duplicate definition of a symbol.
Undefined symbol

Missing START statement.

MR. ANAND GHARU

Example

START 100
MOVER AREG, X
ADDER BREG, X
ADD AREG, Y

X DC 2’

XDC 3

ZDC 3

END

MR. ANAND GHARU

START 100

MOVER AREG, X

ADDER BREG, X Invalid opcode

ADD AREG, Y Undefined symbol Y

XDC 2

XDC 3" duplicate definition of Symbol X.
ZDC‘3

END

MR. ANAND GHARU

PASS-1 OF TWO PASS ASSEMBLER

LT re fﬁ ldbel then insert thelahel wnl_h LC in the
~ symbol table.
- o0 ".'Mdneohvcthen{wocesslt '
&‘{., | Ml!tahle instruction then generate machine
T8 ff the instruction contains a symbol with

Wi l.;:w e

mfbrence then enter the same in the

NOTE : Draw pass-1 and pass-2 algorithm and flowchart in your own

Ungerstangd 9gey

PASS-1 OF TWO PASS ASSEMBLER
lialize

Read - 'y A

Store label 1n
symbol Table Using

with LC value Drop

STSTO

Search Pseudo op
Table (POT)

Type ? END GOTO
Pass 2

l Determune length

Search M/C of op of Data space
Table (MOT) require

MOTGET

l Process
Get length of Literals Update location counter
Instruction [LC]

LITSTO

MR. ANAND-GHARY

PASS-2 OF TWO PASS ASSEMBLER

1
@ Algorithm

1. Code__area_ address — address of Code__area
2. For each entry in ICJ| }
{

a) If an imperative statement
(i) Read L.C

(i1) Get opcode
(i11) Get operand / literal address from the

symbol / literal table.
Assemble instruct in machine code buffer.
Move contents of machine_ _code buffer in
code _area at the address 1.C +

b) If a DC statement then

(11) Assemble the constant in
machine_code buffer.

(111) Move contents of machine code buffer in
code _area at the address 1.C+

code _arca address.

MRIANAND GHARU
3. Write code_area into output file.

PASS-2 OF TWO PASS ASSEMBLER

Inmitialize
Read
l F (S| e END =
Search Pseudo op o {Typ«, ?) > EXIT
Table (POT) l [
POTGET :
Convert &
‘ Output constant
Search M/C of op ‘
Table (MOT)
- Determine length
MOTGET of Data space

.

Giet mstruction
length. type &
binary code

v
Incdicate available
base register (B.T.)

v
l Indicate unavailable
base register

Evaluate operand
expressions by
searching for
values of syinbols
STGET

.

Assemble together
the parts of the
mstruction

A 4
Update location counter v W

LL:C)
MR. ANAND GHARU Fig. 1.5 Flow chart of Pass -2

THANK YOU!!!

My Blog: https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

