THEORY OF COMPUTATION

DEPARTMENT OF COMPUTER ENGINEERING

Subject : TOC

ASSIGNMENT NO – 01

Unit : I

THEORY QUESTIONS

- 1. Define the following terms with example
 - i) DFA ii) NFA iii) epsilon NFA
- 2. Define the following terms with example.
 - i) Alphabet
 - ii) String
 - iii) Regular Language
 - iv) Regular Expression

3. Give formal definitions for the following.

- i) Deterministic finite automata
- ii) Moore machine
- iii) Reachable states of P
- iv) Acceptance of a string by FA
- 4. Explain the extended Transition function of NFA-Epsilon.
- 5. Compare DFA and NFA.
- 6. Compare NFA and NFA epsilon.
- 7. Compare Moore machine and Mealy machine.

<mark>FA AND DFA EXAMPLES</mark>

- 8. Construct DFA to accept String end with 10.
- 9. Construct **DFA** for language defined by input $\{a, b\}$ where
 - S = (String containing only a's)
 - S = (String containing only b's)
 - S = (String containing only a's or b's)

- 10.Construct **DFA** for language defined by input $\{0, 1\}$ where
 - S = (String ending with 0 always)
 - S = (String representing odd binary number)
 - S = (String over alphabets * with total nos of 0's even)
- 11. Construct **DFA** to accepts string of 0's and 1's having at **least three consecutive 0's**.
- 12. Design FA which checks the divisibility by 3 for binary number input.
- 13. Construct a Deterministic Finite Automata (DFA) for the following.
 - i) $L = \{0,1 \mid Accept all the strings ending in 00 or 11\}.$
 - ii) Accept a binary number divisible by 3
- 14. Design **FA** that accepts set of all string over alphabets $\{0, 1\}$

Such that **third symbol from the right end is 1.**

- 15. Design **FA** accepting Following Language over $\{0, 1\}$
 - i) Set of all string having atleast three consecutives zeros
 - ii) Set of all string that begin and end with same symbol.

16.Design **DFA** accepting Following Language over {a, b}

- i) Set of all string that begin with the substring ab
- ii) Set of all string which at most two consecutive b's

17.Construct DFA for the language of all string the begin and end with same symbol for alphabet {0, 1}.

18.Construct **FA** for the following language L.

L=[w/w is a binary word of length 4i, i>=1 such that each consecutive block 4 bits contains at least 2 0's]

- 19.Design a DFA which checks the divisibility by 4 for decimal number.
- **20.**Design a **DFA** which **accepts ternary number divisible by 4.**
- **21.**Design Finite Automata (FA) for accepting strings over $\Sigma = \{0,1\}$ with even numbers of 0's and odd number of 1's.

SSPU University asked questions from 2015-2019 Prepared By : Mr. Anand Gharu

NFA TO DFA CONVERSION EXAMPLES

22. Construct the equivalent DFA for the following NFA :-

States/∑	0	1
→p	{p,q}	{q}
®	{ r }	{ r }
r	-	{r}

23.Let $M = \{ \{q0, q1\}, \{0,1\}, d, q0, \{q1\} \}$

Where

Construct equivalent DFA.

NFA WITH EPSILON EXAMPLES

- 24.Construct NFA with ε moves which accepts a language consisting the strings of any number of a's followed by any number of b's, followed by any number of c's.
- 25.Convert the following NFA with e-moves into NFA without e moves :

MEALY AND MOORE MACHINE EXAMPLES

26.Construct a Mealy Machine which can output EVEN/ODD if the total number of 1's in the input is even or odd. The input symbols are 0 and 1.

27.Construct a Mealy and Moore Machine for 1 's complement of a binary number.

28.Construct a Mealy Machine for 2's complement of a binary number.

CONVERSION OF MEALY TO MOORE MACHINE EXAMPLES

29. Convert the following Mealy Machine to Moore machine -

30. Consider the following Mealy machine, Construct a Moore machine equivalent to it.

31.Construct Mealy machine which equivalent to the Moore machine given in the foll. Table.

	Next state		
Present State			Output
	a=0	a=1	
$\rightarrow q_0$	q_3	q_1	0
q ₁	q_1	q ₂	1
q ₂	q ₂	q ₃	0
q ₃	q ₃	q ₀	0
****			****

***: ***

SSPU University asked questions from 2015-2019

Prepared By : Mr. Anand Gharu