THEORY OF COMPUTATION

DEPARTMENT OF COMPUTER ENGINEERING

Subject : TOC

ASSIGNMENT NO – 02

Unit : II

THEORY QUESTION

- 1. Define the following terms with example
 - i) Kleene closure ii) Positive closure
- 2. Explain in brief, applications of regular expressions.
- 3. Justify if true or false the following:

Every subset of a regular language is regular.

- 4. Prove that : Regular language is closed under complementation.
- 5. What is **Kleen closure** and What **is positive closure**? For given language L under what circumstances L+ and L* is equal?
- 6. What are the **algebraic laws of Regular Expression**.
- 7. Explain the application of Regular Expression in Text Search and Replace.
- 8. With respect to **properties of Regular Language explain what is pumping Lemma** and closure properties of Regular Language.

REGULAR EXPRESSION TO FA/DFA/NFA

- 9. Define Following with suitable example :
 - i) Regular Expression and Operations
 - ii) Prove or Disprove the following : (rs + r)*r = r(sr + r)*
- **10.**Construct Finite Automata defined over { 0, 1} for the following R.E.
 - 1(01+10) + 0(11+10)*

11. Construct a Finite Automata for the following Regular Expressions.

i) (1+0)* (00+11+10)

ii) 1(01+10)*+0(11+10)*

12. Convert the following regular expression to epsilon-NFA and find epsilon closure

of all the states : (0+1)*.1.(0+1)

13. Construct DFA with reduced states equivalent to the regular expression

10+(0+11)0*1

14. Prove the formula :

- i) $(r^* s^*)^* = (r + s)^*$
- ii) (ab)* != a* b*

iii) $(a+b)^* = (a+b)^* + (a+b)^*$

15.Construct minimized DFA accepting language represented by regular expression

0*1*2*. Convert given regular expression to NFA with ε moves.

16.Determine a regular expression over the alphabet $\Sigma = \{a, b\}$ **.**

i) All strings that contain an even number of 'b's

ii) All strings that do not end with 'aa'

17.Illustrate in English the language of the following regular expression:

(1+ε) (00*1) *0*

18. Give the Regular Expression for the following :

i) The set of string over alphabets {a, b}starting with b and ending with odd number of a's or even number of b's.

ii) The set {10, 1010}

19. For the following Regular Expression defined over alphabets $\{a, b\}$, Draw

epsilon-NFA recognizing the corresponding language (ab+ba)* aa(ab+ba)

SSPU University asked questions from 2015-2019 Prepared By : Mr. Anand Gharu

ARDEN'S THEOREM PROBLEMS

20. Find the regular expression for the set of string recognized by the given FA. Use

Arden's Theorem.

21. Make use of Arden's theorem to determine the Regular Expression for the Finite

Automata :

22. Convert following FA into its equivalent regular expression using Arden's

theorem

PUMPING LEMMA PROBLEMS

- 23. Using **Pumping Lemma for the regular set**, Prove that $L = \{a^{i \text{ square}} | i \ge 1\}$ is not regular.
- 24.Using **Pumping Lemma for the regular set**, Prove that $L = \{a^n b^n | i \ge 1\}$ is not regular.
- 25.Using **Pumping Lemma for the regular set**, Prove that $L = \{a^m b^n | i \ge 1\}$ is not regular.
- 26.Define **Pumping Lemma** and Define it for prove the following :

 $L = \{ 0^m \ 1^n \ 0^{m+n} |_{m \ge -1 \text{ and } n \ge -1 \}} \text{ is not regular.}$