

LAB MANUAL

SYSTEM PROGRAMMING
& OPERATING SYSTEM

CLASS : TE 2019 Pattern

Prepared by

PROF. ANAND N. GHARU

2022 - 23

 Mumbai Education Trust’s BKC

 INSTITUTE OF ENGINEERING,NASHIK.
 INDEX Batch : -

`

Sr.

No
Title

Page

No

Date of

Conduction

Date of

Submission

Sign of

Staff

GROUP - A

1

 Design suitable Data structures and implement Pass-I

and Pass-II of a two-pass assembler for pseudo-machine.

Implementation should consist of a few instructions from

each category and few assembler directives. The output of

Pass-I (intermediate code file and symbol table) should be

input for Pass-II..

2

Write a program to create Dynamic Link Library for

any mathematical operation and write an application

program to test it. (Java Native Interface / Use VB or

VC++).

GROUP - B

3
Write a program to solve classical problems of

synchronization using mutex and semaphore

4
Write a java program to implement Page Replacement

Algorithm FIFO, LRU and OPT.

5

Write a Java Program (using OOP features) to implement

paging simulation using

1.FIFO 2. Least Recently Used (LRU)

2. Optimal algorithm(OPT)

Certified that Mr/Miss __ of

class _______ Sem ____ Roll no. ____ has completed the term work satisfactorily in the

subject ________________________________of the Department ___________________of

MET’s Institute of Engineering Nashik. During academic year 2022-23 .

 Staff Member Head of Dept. Principal

 Prof. Gharu A. N. _________________ ________________

GROUP - A

A

GROUP - A

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

GROUP - A

EXPERIMENT NO : 01

1. Title:

Design suitable Data structures and implement Pass-I and Pass-II of a two-pass assembler for

pseudo-machine. Implementation should consist of a few instructions from each category and few

assembler directives. The output of Pass-I (intermediate code file and symbol table) should be input

for Pass-II..

2. Objectives :

- To understand Data structure of Pass-1 assembler

- To understand Pass-1 assembler concept

- To understand Advanced Assembler Directives

3. Problem Statement :

Design suitable data structures and implement Pass-I and Pass-II of a two-pass assembler for

pseudo-machine in Java using object oriented feature.

4. Outcomes:
After completion of this assignment students will be able to:

- Implemented Pass-I and Pass-II assembler

- Implemented Symbol table, Literal table & Pool table, Intermediate Code, Machine code

- Understood concept Advanced Assembler Directive.

5. Software Requirements:

Latest jdk, Eclipse

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

Introduction :-

There are two main classes of programming languages: high level (e.g., C, Pascal) and low

level. Assembly Language is a low level programming language. Programmers code symbolic

instructions, each of which generates machine instructions.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

An assembler is a program that accepts as input an assembly language program (source) and

produces its machine language equivalent (object code) along with the information for the loader.

Figure 1. Executable program generation from an assembly source code

Advantages of coding in assembly language are:

 Provides more control over handling particular hardware components

 May generate smaller, more compact executable modules

 Often results in faster execution

Disadvantages:

 Not portable

 More complex

 Requires understanding of hardware details (interfaces)

Pass – 1 Assembler:

An assembler does the following:

1. Generate machine instructions

- evaluate the mnemonics to produce their machine code

- evaluate the symbols, literals, addresses to produce their equivalent machine addresses

- convert the data constants into their machine representations

2. Process pseudo operations

Pass – 2 Assembler:

A two-pass assembler performs two sequential scans over the source code:

Pass 1: symbols and literals are defined

Pass 2: object program is generated

Parsing: moving in program lines to pull out op-codes and operands

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Data Structures:

- Location counter (LC): points to the next location where the code will be placed

- Op-code translation table: contains symbolic instructions, their lengths and their op-codes (or

subroutine to use for translation)

- Symbol table (ST): contains labels and their values

- String storage buffer (SSB): contains ASCII characters for the strings

- Forward references table (FRT): contains pointer to the string in SSB and offset where its value

will be inserted in the object code

Figure 2. A simple two pass assembler.

Elements of Assembly Language :

An assembly language programming provides three basic features which simplify programming when

compared to machine language.

1. Mnemonic Operation Codes :

Mnemonic operation code / Mnemonic Opcodes for machine instruction eliminates the need to

memorize numeric operation codes. It enables assembler to provide helpful error diagnostics. Such as

indication of misspelt operation codes.

2. Symbolic Operands :

Symbolic names can be associated with data or instructions. These symbolic names can be used as

operands in assembly statements. The assembeler performes memory bindinding to these names; the

programmer need not know any details of the memory bindings performed by the assembler.

3. Data declarations :

Data can be declared in a variety of notations, including the decimal notation. This avoids manual

conversion of constants into their internal machine representation, for example -5 into (11111010)2 or

10.5 into (41A80000)16

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Statement format :

An assembly language statement has the following format :

[Label] <Opcode> <operand Spec> [, operand Spec> ..]

Where the notation [..] indicates that the enclosed specification is optional.

Label associated as a symbolic name with the memory word(s) generated for the statement

Mnemonic Operation Codes :

Instruction Format :

Sign is not a part of Instruction

An Assembly and equivalent machine language program :(solve it properly)

Note : you can also take other example with solution

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Assembly Language Statements :

Three Kinds of Statements

1. Imperative Statements

2. Declaration Statements

3. Assembler Directives

a) Imperative Statements : It indicates an action to be performed during the execution of the

assembled program. Each imperative statement typically translates into one machine instruction.

e.g, MOVER, ADD, MULT etc (All executable statements)

b) Declaration Statements : Two types of declaration statements is as follows

[Label] DS

[Label] DC

<constant>

‘<Value>’

The DS (Declare Storage) statement reserves areas of memory and associates names with them.

Eg)A DS 1

B DS 150

First statement reserves a memory of 1 word and associates the name of the memory as A.

Second statement reserves a memory of 150 word and associates the name of the memory as B.

The DC (Declare Constant) Statement constructs memory word containing constants.

Eg) ONE DC ‘1’

Associates the name ONE with a memory word containing the value ‘1’ . The programmer can declare

constants in decimal, binary, hexadecimal forms etc., These values are not protected by the assembler. In

the above assembly language program the value of ONE Can be changed by executing an instruction

MOVEM BREG,ONE

c. Assembler Directives :

Assembler directives instruct the assembler to perform certain actions during the assembly of a

program. Some Assembler directives are described in the following

START <Constant>

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N..

Indicates that the first word of the target program generated by the assembler should be placed in

the memory word with address <Constant>

END [<operand spec>]

It Indicates the end of the source program

Pass Structure of Assembler :

One complete scan of the source program is known as a pass of a Language Processor.

Two types 1) Single Pass Assembler 2) Two Pass Assembler.

Single Pass Assembler :

First type to be developed Most Primitive Source code is processed only once.

The operand field of an instruction containing forward reference is left blank intially

Eg) MOVER BREG,ONE

Can be only partially synthesized since ONE is a forward reference

During the scan of the source program, all the symbols will be stored in a table called

SYMBOL TABLE. Symbol table consists of two important fields, they are symbol name and

address.

All the statements describing forward references will be stored in a table called Table of

Incompleted Instructions (TII)

TII (Table of Incomplete instructions)

Instruction Address Symbol

101 ONE

By the time the END statement is processed the symbol table would contain the address of all

symbols defined in the source program.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N..

Two Pass Assembler :

Can handle forward reference problem easily.

First Phase : (Analysis)

 Symbols are entered in the table called Symbol table

 Mnemonics and the corresponding opcodes are stored in a table called Mnemonic table

 LC Processing

Second Phase : (Synthesis)

 Synthesis the target form using the address information found in Symbol table.

 First pass constructs an Intermediated Representation (IR) of the source program for use by

the second pass.

Data Structure used during Synthesis Phase :

1. Symbol table

2. Mnemonics table

Processed form of the source program called Intermediate Code (IC)

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N..

ADVANCED ASSEMBLER DIRECTIVES

1. ORIGIN

2. EQU

3. LTROG

ORIGIN :

Syntax : ORIGIN < address spec>

< address spec>can be an <operand spec> or constant

Indicates that Location counter should be set to the address given by < address spec>

This statement is useful when the target program does not consist of consecutive memory words.

Eg) ORIGIN Loop + 2

EQU :

Syntax

<symbol> EQU <address spec>

<address spec>operand spec (or) constant

Simply associates the name symbol with address specification No

Location counter processing is implied

Eg) Back EQU Loop

LTORG : (Literal Origin)

Where should the assembler place literals ?

It should be placed such that the control never reaches it during the execution of a program.

By default, the assembler places the literals after the END statement.

LTROG statement permits a programmer to specify where literals should be placed.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N..

Note :(you can also write your own theory for this practical)

Solve the below example.for Pass-1 & Pass-2 of Two Pass Assembler.

START 200

MOVER AREG, =‘5’

MOVEM AREG, X

L1 MOVER BREG, =‘2’

ORIGIN L1+3

LTORG

NEXT ADD AREG, =‘1’

SUB BREG, =‘2’

BC LT, BACK

LTORG

BACK EQU L1

ORIGIN NEXT+5

MULT CREG, =‘4’

STOP

X DS 1

END

Algorithms :

Write Algorithm for Pass-1 & Pass-2 Assembler.

Flowchart :

Draw Flowchart for Pass-1 & Pass-2 Assembler.

8. Conclusion :

Thus , We have implemented Pass-1 & Pass-2 assembler with symbol table, literal table and pool

table, Intermediate code and Machine code.

Continuous Assessment of Student :

– TC - Timely completion, PR - Performance, IN - Innovation, EC - Efficient Code,

 PN - Punctuality and Neatness.

TC PR IN EC PN Total Marks
Faculty

Signature (2) (2) (2) (2) (2) (10)

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

GROUP - A

EXPERIMENT NO : 02

1. Title:

Write a program to create Dynamic Link Library for any mathematical operation and write an application

program to test it. (Java Native Interface / Use VB or VC++).

2. Objectives :

- To understand Dynamic Link Libraries Concepts

- To implement dynamic link library concepts

- To study about Visual Basic

3. Problem Statement :
Write a program to create Dynamic Link Library for Arithmetic Operation in VB.net

4. Outcomes:
After completion of this assignment students will be able to:

- Understand the concept of Dynamic Link Library

- Understand the Programming language of Visual basic

5. Software Requirements:

 Visual Studio 2010

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

Dynamic Link Library :

A dynamic link library (DLL) is a collection of small programs that can be loaded when needed by

larger programs and used at the same time. The small program lets the larger program communicate

with a specific device, such as a printer or scanner. It is often packaged as a DLL program, which is

usually referred to as a DLL file. DLL files that support specific device operation are known

as device drivers.

A DLL file is often given a ".dll" file name suffix. DLL files are dynamically linked with the

program that uses them during program execution rather than being compiled into the main program.

http://searchenterprisedesktop.techtarget.com/definition/device-driver
http://whatis.techtarget.com/definition/compiler

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

The advantage of DLL files is space is saved in random access memory (RAM) because the

files don't get loaded into RAM together with the main program. When a DLL file is needed, it is

loaded and run. For example, as long as a user is editing a document in Microsoft Word, the printer

DLL file does not need to be loaded into RAM. If the user decides to print the document, the Word

application causes the printer DLL file to be loaded and run.

 A program is separated into modules when using a DLL. With modularized components, a program

can be sold by module, have faster load times and be updated without altering other parts of the

program. DLLs help operating systems and programs run faster, use memory efficiently and take up

less disk space.

Feature of DLL :

DLLs are essentially the same as EXEs, the choice of which to produce as part of the linking process

is for clarity, since it is possible to export functions and data from either.

- It is not possible to directly execute a DLL, since it requires an EXE for the operating system to

load it through an entry point, hence the existence of utilities like RUNDLL.EXE or

RUNDLL32.EXE which provide the entry point and minimal framework for DLLs that contain

enough functionality to execute without much support.

- DLLs provide a mechanism for shared code and data, allowing a developer of shared code/data

to upgrade functionality without requiring applications to be re-linked or re-compiled. From the

application development point of view Windows and OS/2 can be thought of as a collection of

DLLs that are upgraded, allowing applications for one version of the OS to work in a later one,

provided that the OS vendor has ensured that the interfaces and functionality are compatible.

- DLLs execute in the memory space of the calling process and with the same access permissions

which means there is little overhead in their use but also that there is no protection for the calling

EXE if the DLL has any sort of bug.

Difference between the Application & DLL :

- An application can have multiple instances of itself running in the system simultaneously,

whereas a DLL can have only one instance.

- An application can own things such as a stack, global memory, file handles, and a message

queue, but a DLL cannot.

http://searchmobilecomputing.techtarget.com/definition/RAM
http://whatis.techtarget.com/definition/module
http://whatis.techtarget.com/definition/operating-system-OS
http://searchstorage.techtarget.com/definition/hard-disk

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

Executable file links to DLL :

An executable file links to (or loads) a DLL in one of two ways:

 Implicit linking

 Explicit linking

Implicit linking is sometimes referred to as static load or load-time dynamic linking. Explicit

linking is sometimes referred to as dynamic load or run-time dynamic linking.

With implicit linking, the executable using the DLL links to an import library (.lib file) provided by

the maker of the DLL. The operating system loads the DLL when the executable using it is loaded.

The client executable calls the DLL's exported functions just as if the functions were contained

within the executable.

With explicit linking, the executable using the DLL must make function calls to explicitly load and

unload the DLL and to access the DLL's exported functions. The client executable must call the

exported functions through a function pointer.

An executable can use the same DLL with either linking method. Furthermore, these mechanisms

are not mutually exclusive, as one executable can implicitly link to a DLL and another can attach to

it explicitly.

DLL’s Advantages :

- Saves memory and reduces swapping. Many processes can use a single DLL simultaneously,

sharing a single copy of the DLL in memory. In contrast, Windows must load a copy of the

library code into memory for each application that is built with a static link library.

- Saves disk space. Many applications can share a single copy of the DLL on disk. In contrast,

each application built with a static link library has the library code linked into its executable

image as a separate copy.

- Upgrades to the DLL are easier. When the functions in a DLL change, the applications that use

them do not need to be recompiled or relinked as long as the function arguments and return

values do not change. In contrast, statically linked object code requires that the application be

relinked when the functions change.

- Provides after-market support. For example, a display driver DLL can be modified to support a

display that was not available when the application was shipped.

- Supports multi language programs. Programs written in different programming languages can

call the same DLL function as long as the programs follow the function's calling convention. The

programs and the DLL function must be compatible in the following ways: the order in which

the function expects its arguments to be pushed onto the stack, whether the function or the

application is responsible for cleaning up the stack, and whether any arguments are passed in

registers.

https://msdn.microsoft.com/en-us/library/d14wsce5.aspx
https://msdn.microsoft.com/en-us/library/784bt7z7.aspx

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

- Provides a mechanism to extend the MFC library classes. You can derive classes from the

existing MFC classes and place them in an MFC extension DLL for use by MFC applications.

- Eases the creation of international versions. By placing resources in a DLL, it is much easier to

create international versions of an application. You can place the strings for each language

version of your application in a separate resource DLL and have the different language versions

load the appropriate resources.

Disadvantage :

- A potential disadvantage to using DLLs is that the application is not self-contained; it depends

on the existence of a separate DLL module.

Visual Basic :

Visual Basic is a third-generation event-driven programming language first released by Microsoft in

1991. It evolved from the earlier DOS version called BASIC. BASIC means Beginners' All-

purpose Symbolic Instruction Code. Since then Microsoft has released many versions of Visual

Basic, from Visual Basic 1.0 to the final version Visual Basic 6.0. Visual Basic is a user-friendly

programming language designed for beginners, and it enables anyone to develop GUI window

applications easily.

In 2002, Microsoft released Visual Basic.NET(VB.NET) to replace Visual Basic 6. Thereafter,

Microsoft declared VB6 a legacy programming language in 2008. Fortunately, Microsoft still

provides some form of support for VB6. VB.NET is a fully object-oriented programming language

implemented in the .NET Framework. It was created to cater for the development of the web as well

as mobile applications. However, many developers still favor Visual Basic 6.0 over its successor

Visual Basic.NET.

8. Design (architecture) :

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

STEP FOR DLL PROGRAM :

1. Create new project project visual basic windows form application name the project
click OK.

2. Design form :

3. Right click on solution Add new project windows empty project name to dll
file(p5dll) OK.

4. Right click on dll file (p5dll) add module renmame module name as p5dll OK.

5. Right click on dll file properties application type (class library) save file.

6. Right click on main project add references (created dll file will be displayed) select dll file
OK.

7. Write coding on button click event to main project (i.e. step no. 2)
8. Run application

9. Display Result

9. Algorithms(procedure) :

Note: you should write algorithm & procedure as per program/concepts

10. Flowchart :

Note: you should draw flowchart as per algorithm/procedure

11. Conclusion:

Thus, I have studied visual programming and implemented dynamic link library application

for arithmetic operation

 Continuous Assessment of Student :

– TC - Timely completion, PR - Performance, IN - Innovation, EC - Efficient Code,

 PN - Punctuality and Neatness.

TC PR IN EC PN Total Marks
Faculty

Signature (2) (2) (2) (2) (2) (10)

GROUP - B

A

GROUP - B

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

GROUP - B

EXPERIMENT NO : 03

1. Title:

Write a program to solve classical problems of synchronization using mutex and semaphore.

2. Objectives :

 To understand reader writer synchronization problem

 To solve reader-writer synchronization problem using mutex and semaphore

3. Problem Statement :
Write a program to solve classical problems of synchronization using mutex and emaphore.
(Reader-Writer Problem)

4. Outcomes:
After completion of this assignment students will be able to:

- Understand the concept of Deadlock, Semaphore, Mutex

- Understand of Classical synchronization problem

5. Software Requirements:

 Eclipse IDE

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

There is a data area shared among a number of processor registers.

• The data area could be a file, a block of main memory, or even a bank of processor

registers.

• There are a number of processes that only read the data area (readers) and a number that

only write to the data area (writers).

• The conditions that must be satisfied are

➢ Any number of readers may read simultaneously read the file.

➢ Only one write at a time may write to the file.

➢ If a writer is writing to the file, no reader may read it.

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

 Classical Synchronization Problem :

We will see number of classical problems of synchronization as examples of a large class of

concurrency-control problems. In our solutions to the problems, we use semaphores for

synchronization, since that is the traditional way to present such solutions. However, actual

implementations of these solutions could use mutex locks in place of binary semaphores.

These problems are used for testing nearly every newly proposed synchronization scheme. The

following problems of synchronization are considered as classical problems:

1. Bounded-buffer (or Producer-Consumer) Problem,

2. Dining-Philosophers Problem,

3. Readers and Writers Problem,

4. Sleeping Barber Problem

1. Bounded-buffer (or Producer-Consumer) Problem:

Bounded Buffer problem is also called producer consumer problem. This problem is generalized in

terms of the Producer-Consumer problem. Solution to this problem is, creating two counting

semaphores “full” and “empty” to keep track of the current number of full and empty buffers

respectively. Producers produce a product and consumers consume the product, but both use of one

of the containers each time.

2. Dining-Philosophers Problem:

The Dining Philosopher Problem states that K philosophers seated around a circular table with one

chopstick between each pair of philosophers. There is one chopstick between each philosopher. A

philosopher may eat if he can pickup the two chopsticks adjacent to him. One chopstick may be

picked up by any one of its adjacent followers but not both. This problem involves the allocation of

limited resources to a group of processes in a deadlock-free and starvation-free manner.

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

3. Readers and Writers Problem:

Suppose that a database is to be shared among several concurrent processes. Some of these processes

may want only to read the database, whereas others may want to update (that is, to read and write)

the database. We distinguish between these two types of processes by referring to the former as

readers and to the latter as writers. Precisely in OS we call this situation as the readers-writers

problem. Problem parameters:

 One set of data is shared among a number of processes.

 Once a writer is ready, it performs its write. Only one writer may write at a time.

 If a process is writing, no other process can read it.

 If at least one reader is reading, no other process can write.

 Readers may not write and only read.

4. Sleeping Barber Problem:

Barber shop with one barber, one barber chair and N chairs to wait in. When no customers the barber

goes to sleep in barber chair and must be woken when a customer comes in. When barber is cutting

hair new customers take empty seats to wait, or leave if no vacancy.

Semaphore:

Definition: Semaphores are system variables used for synchronization of process.

Semaphore can be used in other synchronization problems besides Mutual Exclusion.

Two types of Semaphore:

➢ Counting semaphore – integer value can range over an unrestricted domain

➢ Binary semaphore –

Integer value can range only between 0 and 1; can be simpler to implement

Also known as mutex locks

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

Semaphore functions:

Package: import java.util.concurrent.Semaphore;

1) To initialize a semaphore:

Semaphore Sem1 = new Semaphore(1);

2) To wait on a semaphore:

/* Wait (S)

while S<=0

no-op;

S - -;

*/

Sem1.acquire();

3) To signal on a semaphore:

/* Signal(S)

S ++;

*/ mutex.release();

8. Algorithms(procedure) :

Note: you should write algorithm & procedure as per program/concepts

(its sample algo. For reference)

1. import java.util.concurrent.Semaphore;

2. Create a class RW

3. Declare semaphores – mutex and wrt

4. Declare integer variable readcount = 0

5. Create a nested class Reader implements Runnable

a. Override run method (Reader Logic)

i. wait(mutex);

ii. readcount := readcount +1;

iii. if readcount = 1 then

iv. wait(wrt);

v. signal(mutex);

vi. …

vii. reading is performed

viii. …

ix. wait(mutex);

x. readcount := readcount – 1;

xi. if readcount = 0 then signal(wrt);

xii. signal(mutex):

6. Create a nested class Writer implements Runnable

a. Override run method (Writer Logic)

i. wait(wrt);

ii. …

Laboratory Practice – I Third Year (2019)Computer Engineering

MET’s INSTITUTE OF ENGINEERING,BKC,NASHIK. Prepared by: Prof. Anand Gharu

iii. writing is performed

iv. …

v. signal(wrt);

7. Create a class main

a. Create Threads for Reader and Writer

b. Start these thread

9. Flowchart :

Note: you should draw flowchart as per algorithm/procedure

10. Conclusion:

Thus, I have studied classical synchronization problem to implement reader-writer problem

using semaphore and mutex.

 Continuous Assessment of Student :

– TC - Timely completion, PR - Performance, IN - Innovation, EC - Efficient Code,

 PN - Punctuality and Neatness.

TC PR IN EC PN Total Marks
Faculty

Signature (2) (2) (2) (2) (2) (10)

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

GROUP - B

EXPERIMENT NO : 04

1. Title:

Write a Java program (using OOP features) to implement following scheduling algorithms: FCFS ,

SJF (Preemptive), Priority (Non-Preemptive) and Round Robin (Preemptive).

2. Objectives :

- To understand OS & SCHEDULLING Concepts

- To implement Scheduling FCFS, SJF, RR & Priority algorithms

- To study about Scheduling and scheduler

3. Problem Statement :

Write a Java program (using OOP features) to implement following scheduling algorithms: FCFS ,

SJF, Priority and Round Robin .

4. Outcomes:

After completion of this assignment students will be able to:

- Knowledge Scheduling policies

- Compare different scheduling algorithms

5. Software Requirements:

JDK/Eclipse

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

CPU Scheduling:

• CPU scheduling refers to a set of policies and mechanisms built into the operating systems that govern

the order in which the work to be done by a computer system is completed.

• Scheduler is an OS module that selects the next job to be admitted into the system and next process to

run.

• The primary objective of scheduling is to optimize system performance in accordance with the criteria

deemed most important by the system designers.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

What is scheduling?

Scheduling is defined as the process that governs the order in which the work is to be done. Scheduling

is done in the areas where more no. of jobs or works are to be performed. Then it requires some plan i.e.

scheduling that means how the jobs are to be performed i.e. order. CPU scheduling is best example of

scheduling.

What is scheduler?

1. Scheduler in an OS module that selects the next job to be admitted into the system and the next

process to run.

2. Primary objective of the scheduler is to optimize system performance in accordance with the

criteria deemed by the system designers. In short, scheduler is that module of OS which

schedules the programs in an efficient manner.

Necessity of scheduling

• Scheduling is required when no. of jobs are to be performed by CPU.

• Scheduling provides mechanism to give order to each work to be done.

• Primary objective of scheduling is to optimize system performance.

• Scheduling provides the ease to CPU to execute the processes in efficient manner.

Types of schedulers

In general, there are three different types of schedulers which may co-exist in a complex operating

system.

• Long term scheduler

• Medium term scheduler

• Short term scheduler.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

``

Long Term Scheduler

• The long term scheduler, when present works with the batch queue and selects the next batch job to be

executed.

• Batch is usually reserved for resource intensive (processor time, memory, special I/O devices) low

priority programs that may be used fillers of low activity of interactive jobs.

• Batch jobs usually also contains programmer-assigned or system-assigned estimates of their resource

needs such as memory size, expected execution time and device requirements.

• Primary goal of long term scheduler is to provide a balanced mix of jobs.

Medium Term Scheduler

• After executing for a while, a running process may because suspended by making an I/O request or by

issuing a system call.

• When number of processes becomes suspended, the remaining supply of ready processes in systems

where all suspended processes remains resident in memory may become reduced to a level that impairs

functioning of schedulers.

• The medium term scheduler is in charge of handling the swapped out processes.

• It has little to do while a process is remained as suspended.

Short Term Scheduler

• The short term scheduler allocates the processor among the pool of ready processes resident in the

memory.

• Its main objective is to maximize system performance in accordance with the chosen set of criteria.

• Some of the events introduced thus for that cause rescheduling by virtue of their ability to change the

global system state are:

• Clock ticks

• Interrupt and I/O completions

• Most operational OS calls

• Sending and receiving of signals

• Activation of interactive programs.

• Whenever one of these events occurs ,the OS involves the short term scheduler.

Scheduling Criteria :

 CPU Utilization:

Keep the CPU as busy as possible. It range from 0 to 100%. In practice, it range from 40 to 90%.

 Throughput:

Throughput is the rate at which processes are completed per unit of time.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

``

 Turnaround time:

This is the how long a process takes to execute a process. It is calculated as the time gap between the

submission of a process and its completion.

 Waiting time:

Waiting time is the sum of the time periods spent in waiting in the ready queue.

 Response time:

Response time is the time it takes to start responding from submission time. It is calculated as the

amount of time it takes from when a request was submitted until the first response is produced.

Non-preemptive Scheduling :

In non-preemptive mode, once if a process enters into running state, it continues to execute until it

terminates or blocks itself to wait for Input/Output or by requesting some operating system service.

Preemptive Scheduling :

In preemptive mode, currently running process may be interrupted and moved to the ready State by the

operating system.

When a new process arrives or when an interrupt occurs, preemptive policies may incur greater

overhead than non-preemptive version but preemptive version may provide better service.

It is desirable to maximize CPU utilization and throughput, and to minimize turnaround time, waiting

time and response time.

Types of scheduling Algorithms

• In general, scheduling disciplines may be pre-emptive or non-pre-emptive .

• In batch, non-pre-emptive implies that once scheduled, a selected job turns to completion.

There are different types of scheduling algorithms such as:

 FCFS(First Come First Serve)

 SJF(Short Job First)

 Priority scheduling

 Round Robin Scheduling algorithm

First Come First Serve Algorithm

• FCFS is working on the simplest scheduling discipline.

• The workload is simply processed in an order of their arrival, with no pre-emption.

• FCFS scheduling may result into poor performance.

• Since there is no discrimination on the basis of required services, short jobs may considerable in turn

around delay and waiting time.

System Programming & OS Laboratory Third Year(2019) Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

``

Advantages

 Better for long processes

 Simple method (i.e., minimum overhead on processor)

 No starvation

Disadvantages

 Convoy effect occurs. Even very small process should wait for its turn to come to utilize the CPU.

Short process behind long process results in lower CPU utilization.

 Throughput is not emphasized.

Note : solve complete e.g. as we studied in practical(above is just sample e.g.). you can take any

e.g.

Shortest Job First Algorithm :

 his is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take.

System Programming & OS Laboratory
``

Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Advantages

 It gives superior turnaround time performance to shortest process next because a short job is given

immediate preference to a running longer job.

 Throughput is high.

Disadvantages

 Elapsed time (i.e., execution-completed-time) must be recorded, it results an additional overhead on

the processor.

 Starvation may be possible for the longer processes.

This algorithm is divided into two types:

• Pre-emptive SJF

• Non-pre-emptive SJF

• Pre-emptive SJF Algorithm:

In this type of SJF, the shortest job is executed 1st. the job having least arrival time is taken first for

execution. It is executed till the next job arrival is reached.

Note : solve complete e.g. as we studied in practical(above is just sample e.g.). you can take any

e.g.

Non-pre-emptive SJF Algorithm:

In this algorithm, job having less burst time is selected 1st for execution. It is executed for its total

burst time and then the next job having least burst time is selected.

System Programming & OS Laboratory
``

Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Note : solve complete e.g. as we studied in practical(above is just sample e.g.). you can take any

e.g.

Round Robin Scheduling :

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process executes for a

given time period.

 Context switching is used to save states of preempted processe

Advantages

 Round-robin is effective in a general-purpose, times-sharing system or transaction-processing

system.

 Fair treatment for all the processes.

 Overhead on processor is low.

 Overhead on processor is low.

 Good response time for short processes.

Disadvantages

 Care must be taken in choosing quantum value.

 Processing overhead is there in handling clock interrupt.

 Throughput is low if time quantum is too small.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Note : solve complete e.g. as we studied in practical(above is just sample e.g.). you can take any

e.g.

Priority Scheduling :

 Priority scheduling is a non-preemptive algorithm and one of the most common scheduling

algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed first and so on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any other resource

requirement.

Advantage

 Good response for the highest priority processes.

Disadvantage

 Starvation may be possible for the lowest priority processes.

 Note : solve complete e.g. as we studied in practical(above is just sample e.g.). you can take any e.g.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

8. Algorithms(procedure) :

FCFS :

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time

Step 4: Set the waiting of the first process as ‘0’ and its burst time as its turn around time

Step 5: for each process in the Ready Q calculate

(a) Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)

(b) Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)

Step 6: Calculate

(a) Average waiting time = Total waiting Time / Number of process

(b) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

SJF :

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time

Step 4: Start the Ready Q according the shortest Burst time by sorting according to lowest to

highest burst time.

Step 5: Set the waiting time of the first process as ‘0’ and its turnaround time as its burst time.

Step 6: For each process in the ready queue, calculate

(c) Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)

(d) Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)

Step 6: Calculate

(c) Average waiting time = Total waiting Time / Number of process

(d) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

RR :

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum (or) time slice

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time

Step 4: Calculate the no. of time slices for each process where

No. of time slice for process(n) = burst time process(n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

(a) Waiting time for process(n) = waiting time of process(n-1)+ burst time of process(n-1) +

the time difference in getting the CPU from process(n-1)

(b) Turn around time for process(n) = waiting time of process(n) + burst time of process(n)+

the time difference in getting CPU from process(n).

Step 7: Calculate

(e) Average waiting time = Total waiting Time / Number of process

(f) Average Turnaround time = Total Turnaround Time / Number of process

Step 8: Stop the process.

Priority Scheduling :

Algorithms :

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time, priority

Step 4: Start the Ready Q according the priority by sorting according to lowest to

highest burst time and process.

Step 5: Set the waiting time of the first process as ‘0’ and its turnaround time as its burst time.
``

Step 6: For each process in the ready queue, calculate

(e) Waiting time for process(n)= waiting time of process (n-1) + Burst time of process(n-1)

(f) Turn around time for Process(n)= waiting time of Process(n)+ Burst time for process(n)

Step 6: Calculate

(g) Average waiting time = Total waiting Time / Number of process

(h) Average Turnaround time = Total Turnaround Time / Number of process

Step 7: Stop the process

Note: you can write algorithm & procedure as per your program/concepts

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

9. Flowchart :

Note: you should draw flowchart as per algorithm/procedure as above

10. Conclusion:

Hence we have studied and implemented that-

• CPU scheduling concepts like context switching, types of schedulers, different timing

parameter like waiting time, turnaround time, burst time, etc.

• Different CPU scheduling algorithms like FIFO, SJF, Priority and Round Robin Etc.

Continuous Assessment of Student :

– TC - Timely completion, PR - Performance, IN - Innovation, EC - Efficient

Code, PN - Punctuality and Neatness.

TC PR IN EC PN Total Marks
Faculty

Signature (2) (2) (2) (2) (2) (10)

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

GROUP – B-7

EXPERIMENT NO : 05

1. Title:

Write a program to simulate Page replacement algorithm..

2. Objectives :

- To understand Page replacement policies

- To understand paging concept

- To understand Concept of page fault, page hit, miss, hit ratio etc

3. Problem Statement :

Write a java program to implement Page Replacement Algorithm FIFO, LRU and OPT.

4. Outcomes:
After completion of this assignment students will be able to:

- Knowledge of Page Replacement Policies in OS

- Implemented LRU & OPT Page replacement Policies

- Understood concept of paging.

5. Software Requirements:

Latest jdk., Eclipse

6. Hardware Requirement:

- M/C Lenovo Think center M700 Ci3,6100,6th Gen. H81, 4GB RAM ,500GB HDD

7. Theory Concepts:

Paging :

A computer can address more memory than the amount physically installed on the system. This extra

memory is actually called virtual memory and it is a section of a hard that's set up to emulate the

computer's RAM. Paging technique plays an important role in implementing virtual memory.

Paging is a memory management technique in which process address space is broken into blocks of

the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The size of the

process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory

called frames and the size of a frame is kept the same as that of a page to have optimum utilization of

the main memory and to avoid external fragmentation.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Address Translation

Page address is called logical address and represented by page numberand the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame number and the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a page of a process to a

frame in physical memory.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

When the system allocates a frame to any page, it translates this logical address into a physical address

and create entry into the page table to be used throughout execution of the program.

When a process is to be executed, its corresponding pages are loaded into any available memory

frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a given

point in time, then the paging concept will come into picture. When a computer runs out of RAM, the

operating system (OS) will move idle or unwanted pages of memory to secondary memory to free up

RAM for other processes and brings them back when needed by the program.

This process continues during the whole execution of the program where the OS keeps removing idle

pages from the main memory and write them onto the secondary memory and bring them back when

required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

 Paging reduces external fragmentation, but still suffer from internal fragmentation.

 Paging is simple to implement and assumed as an efficient memory management technique.

 Due to equal size of the pages and frames, swapping becomes very easy.

 Page table requires extra memory space, so may not be good for a system having small RAM.

A computer can address more memory than the amount physically installed on the system. This extra

memory is actually called virtual memory and it is a section of a hard disk that's set up to emulate the

computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical memory.

Virtual memory serves two purposes. First, it allows us to extend the use of physical memory by using

disk. Second, it allows us to have memory protection, because each virtual address is translated to a

physical address.

Following are the situations, when entire program is not required to be loaded fully in main memory.

 User written error handling routines are used only when an error occurred in the data or

computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only a small amount of the

table is actually used.

 The ability to execute a program that is only partially in memory would counter many benefits.

 Less number of I/O would be needed to load or swap each user program into memory.

 A program would no longer be constrained by the amount of physical memory that is available.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

 Each user program could take less physical memory, more programs could be run the same time,

with a corresponding increase in CPU utilization and throughput.

Modern microprocessors intended for general-purpose use, a memory management unit, or MMU, is built

into the hardware. The MMU's job is to translate virtual addresses into physical addresses. A basic

example is given below −

Virtual memory is commonly implemented by demand paging. It can also be implemented in a

segmentation system. Demand segmentation can also be used to provide virtual memory.

Demand Paging

A demand paging system is quite similar to a paging system with swapping where processes reside in

secondary memory and pages are loaded only on demand, not in advance. When a context switch

occurs, the operating system does not copy any of the old program’s pages out to the disk or any of the

new program’s pages into the main memory Instead, it just begins executing the new program after

loading the first page and fetches that program’s pages as they are referenced.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

While executing a program, if the program references a page which is not available in the main

memory because it was swapped out a little ago, the processor treats this invalid memory reference as

a page fault and transfers control from the program to the operating system to demand the page back

into the memory.

Advantages

Following are the advantages of Demand Paging −

 Large virtual memory.

 More efficient use of memory.

 There is no limit on degree of multiprogramming.

Disadvantages

 Number of tables and the amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Page Replacement Algorithm :

Page replacement algorithms are the techniques using which an Operating System decides which memory

pages to swap out, write to disk when a page of memory needs to be allocated. Paging happens whenever

a page fault occurs and a free page cannot be used for allocation purpose accounting to reason that pages

are not available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced again, it has to read in

from disk, and this requires for I/O completion. This process determines the quality of the page

replacement algorithm: the lesser the time waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the pages provided by

hardware, and tries to select which pages should be replaced to minimize the total number of page misses,

while balancing it with the costs of primary storage and processor time of the algorithm itself. There are

many different page replacement algorithms. We evaluate an algorithm by running it on a particular string

of memory reference and computing the number of page faults,

Page fault :

A page fault (sometimes called #PF, PF or hard fault) is a type of exception raised by computer hardware

when a running program accesses a memory pagethat is not currently mapped by the memory

management unit (MMU) into the virtual address space of a process.

Page hit :

A hit is a request to a web server for a file, like a web page, image, JavaScript, or Cascading Style Sheet.

When a web page is downloaded from a server the number of "hits" or "page hits" is equal to the number

of files requested.

Page frame :

The page frame is the storage unit (typically 4KB in size) whereas the page is the contents that you

would store in the storage unit ie the page frame. For eg) the RAM is divided into fixed size blocks

called page frames which is typically 4KB in size, and each page frame can store 4KB of data ie

the page.

Page table :

A page table is the data structure used by a virtual memory system in a computer operating system to

store the mapping between virtual addresses and physical addresses.

Reference String :

The string of memory references is called reference string. Reference strings are generated artificially or

by tracing a given system and recording the address of each memory reference. The latter choice produces

a large number of data, where we note two things.

 For a given page size, we need to consider only the page number, not the entire address.

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

 If we have a reference to a page p, then any immediately following references to page p will never

cause a page fault. Page p will be in memory after the first reference; the immediately following

references will not fault.

 For example, consider the following sequence of addresses − 123,215,600,1234,76,96

 If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm :

 Oldest page in main memory is the one which will be selected for replacement.

 Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

Advantages

1. Simple to understand and implement

2. Does not cause more overhead

Disadvantages

1. Poor performance

2. Doesn’t use the frequency of the last used time and just simply replaces the oldest page.

3. Suffers from Belady’s anomaly.

Note : you can take other example also. This just for reference. (you must calculate page fault, page hit and hit

ratio)

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Least Recently Used (LRU) algorithm :

 Page which has not been used for the longest time in main memory is the one which will be selected

for replacement.

 Easy to implement, keep a list, replace pages by looking back into time.

Advantages

1. It is open for full analysis

2. Doesn’t suffer from Belady’s anomaly

3. Often more efficient than other algorithms

Disadvantages

1. It requires additional data structures to be implemented

2. More complex

3. High hardware assistance is required

Note : you can take other example also. This just for reference. (you must calculate page fault, page hit and hit

ratio)

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Optimal Page algorithm :

 An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal

page-replacement algorithm exists, and has been called OPT or MIN.

 Replace the page that will not be used for the longest period of time. Use the time when a page is to be

used.

Advantages

1. Excellent efficiency

2. Less complexity

3. Easy to use and understand

4. Simple data structures can be used to implement

5. Used as the benchmark for other algorithms

Disadvantages

1. More time consuming

2. Difficult for error handling

3. Need future awareness of the programs, which is not possible every time

Note : you can take other example also. This just for reference. (you must calculate page fault, page hit and hit

ratio)

System Programming & OS Laboratory Third Year Computer Engineering

MET’s Institute of Engineering, BKC, Nashik. Prepared by: prof. Gharu A. N.

Page Buffering algorithm

 To get a process start quickly, keep a pool of free frames.

 On page fault, select a page to be replaced.

 Write the new page in the frame of free pool, mark the page table and restart the process.

 Now write the dirty page out of disk and place the frame holding replaced page in free pool.

Least frequently Used(LFU) algorithm

 The page with the smallest count is the one which will be selected for replacement.

 This algorithm suffers from the situation in which a page is used heavily during the initial phase of a

process, but then is never used again.

Most frequently Used(MFU) algorithm

 This algorithm is based on the argument that the page with the smallest count was probably just

brought in and has yet to be used.

8. Conclusion :

Thus , We have implemented page replacement policies FIFO, LRU and OPT.

 Continuous Assessment of Student :

– TC - Timely completion, PR - Performance, IN - Innovation, EC - Efficient

Code, PN - Punctuality and Neatness.

Note : Draw Flowchart and algorithm for program.

TC PR IN EC PN Total Marks
Faculty

Signature (2) (2) (2) (2) (2) (10)

THANKS..!
PROF. ANAND NANDLAL GHARU

ASSISTANT PROFESSOR(Computer)

MET IOE, NASHIK

Blog : anandgharu.wordpress.com

