
“LOADER AND LINKER”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

Computer Dept.

27 OCT 2023

.

CLASS : TE COMPUTER 2019

SUBJECT : SPOS (SEM-I)

UNIT : III

CONTENTS :-

• Introduction, Loader schemes:

1. Compile and Go

2. General Loader Scheme

3. Absolute Loaders

4. Subroutine Linkages

5. Relocating Loaders

6. Direct linking Loaders

• Overlay structure,

• Design of an Absolute Loader,

• Design of Direct linking Loader,

• Self-relocating programs,

• Static and Dynamic linking

CONTENTS :-

Sample videos :

1. Preprocessor :

https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3

yN2AG0JiREp

2. Compiler execution stages :

https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS

3yN2AG0JiREp

https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/JZkPEl8JjZo?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp
https://youtu.be/cJDRShqtTbk?list=PLhb7SOmGNUc6Fg7zmBOOS3yN2AG0JiREp

Computer : A programmable device that can store, retrieve,

and process data.(Combination of H/w & S/w)

Hardware : things which we can touch.

Software : things which we cannt touch.(Can only see)

Programming: A programming language is a set of

commands, instructions, and other syntax use to create a

software program.

Data : Information in a form a computer can use

Information : Any knowledge that can be communicated

Introduction

Machine language : The language, made up of binary coded

instructions, that is used directly by the computer

Assembly language : A low-level programming language

in which a mnemonic is used to represent each of the

machine language instructions for a particular computer

Introduction

Source code : Program or set of instructions written in a

high-level programming language

Object code : A machine language version of source

code.

Target code : program output in Machine code (binary

form)

,

Introduction

Introduction
Preprocessor :

A preprocessor is a program that processes its input data to produce

output that is used as input to another program.

Editor : A text editor is a type of computer program that edits plain

text. Such programs are sometimes known as "notepad" software

Compiler : A program that translates a program written in a high-

level language into machine code

Assembler : A program that translates an assembly language

program into machine code

Introduction

Loader:-

• A loader is a program used by an operating system to load

programs from a secondary to main memory so as to be executed.

Linker :

A linker is a computer program that takes one or more object files

generated by a compiler and combines them into one, executable

program

Debugger :

Debugger is program which is used to test program or execute

program in single step execution.

INTRODUCTION TO LOADER

 Object code, or an object file, is the representation of

code that a compiler or assembler generates by

processing a source code file.

 A linker is typically used to generate an executable file

by linking object files together.

 Object files often also contain data for use by the code

at runtime, relocation information, program symbols

(names of variables and functions) for linking and/or

debugging purposes, and other debugging information.

../wiki/Compiler
../wiki/Assembler
../wiki/Source_code
../wiki/Source_code
../wiki/Source_code
../wiki/Linker
../wiki/Executable
../wiki/Relocation
../wiki/Debug_symbol
../wiki/Debugging

Introduction
to

Loader

INTRODUCTION TO LOADER
The loader loads the program into the main memory for execution of that

program. It loads machine instruction and data of related programs and

subroutines into the main memory, this process is known as loading.

The loader performs loading; hence, the assembler must provide the

loader with the object program

FUNCTION OF LOADER

1. Allocation: It allocates memory for the program in the main

memory.

2. Linking: It combines two or more separate object programs or

modules and supplies necessary information.

3. Relocation: It modifies the object program so that it can be

loaded at an address different from the location.

4. Loading: It brings the object program into the main memory

for execution.

Loader Object program

ready for execution Assembler

Fig.: Role of loader Memory

Source

Program

13 10/28/2023

 Loader is utility program which takes object

code as input prepares it for execution and loads

the executable code into the memory.

 Thus loader is actually responsible for

 initiating the executions process.

14 10/28/2023

Relocation and linking concepts

15 10/28/2023

 User defined function and library function

 Example - printf() ,scanf()

 The linking process makes address of modules known to each other so

that transfer of control takes place during execution.

 Passing of parameter is handled by the linker.

 Public variable-same address

 External variable –defined in one module and used in another module.

 Resolving of addresses of symbolic reference is handled by the

linker.

16 10/28/2023

 Linker-

 1.Handled the passing of parameter

 2.Resolving of address of symbolic reference

17 10/28/2023

 It is the process of modifying the addresses used

in the address sensitive instructions of a program

 So, program Can execute correctly from any

designated area of memory.

 Ex. MOVER AREG,X

 Ex.:-Program A, call function F1();

 Program A and F1() must be linked with each

other. 18 10/28/2023

Case I: Address assigned to Prog. A and F1 () when they translated to

memory

Drawback- a lot of storage area

 is wasted

 0

100

250

400

500

 F1

A

Fig.: General Loading scheme

Wasted area

19 10/28/2023

Case II: These two module cannot co-exist at same storage locations.

Fig.: Relocation to avoid address conflict or storage waste

 0

150

151

251

F1

A
A

F1

 Main

 Storage

100

250

100

200

Translation time
address

Relocated address given
by the loader

20 10/28/2023

 A loader must relocate A and F1 to avoid address

conflict or storage waste.

 Relocation refers to adjustment of address field

not to movement of a program.

21 10/28/2023

ARCHITECTURE OF LOADER

Architecture of Loader

ARCHITECTURE OF LOADER
• Source program: This is a program written in a high-level

programming language that needs to be executed.

• Translator: This component, such as a compiler or interpreter,

converts the source program into an object program.

• Object program: This is the program in a machine-readable

form, usually in binary, that contains both the instructions and

data of the program.

• Executable object code: This is the object program that has

been processed by the loader and is ready to be executed.

ADVANTAGES OF LOADER
• Memory management – allow separate/protected area

• Dynamic Linking – handle external references

• Relocation – to avoid conflict with other program

• Error handling – missing libraries, incompatible

instruction

• Modularity – easier to maintain and update

• Reusability – same module/libraries can be used by

other program also

DISADVANTAGES OF LOADER
• Complexity – implementation difficult due to memory

management, relocation etc.

• Overhead – take more time to process

• Limited flexibility – may not be easily portable

• Security – poor design may introduce vulnerability

• Dependency issues – may depend on external libraries

Various types of loader ,based on various functionalities

1. Compile and go loader

2. General loader scheme

3. Absolute loader

4. Subroutine linkage

5. Relocating loader

6. Direct linking loader

27 10/28/2023

COMPILE AND GO LOADER
Compile and Go Loader :

COMPILE AND GO LOADER
Performing the loader function is to have the assembler run in one

part of memory and place the assembled machine instructions and

data, as they are assembled, directly into their assigned memory

location. It is also called “assemble and go loader”

In this scheme, the source code goes into the translator line by line, and

then that single line of code loads into memory.

In another language, chunks of source code go into execution. Line-by-

line code goes to the translator so there is no proper object code. Because

of that, if the user runs the same source program, every line of code will

again be translated by a translator. So here re-translation happens.

ADVANTAGES COMPILE AND GO LOADER
1. It is very simple to implement.

2. The translator is enough to do the task, no subroutines are needed.

3. It is the most simple scheme of the functions of the loader

4. It provides security

Disadvantages:

1. There is no use of the assembler but it is still there so a wastage of

memory takes place.

2. When source code runs multiple times the translation is also done

every time. so re-translation is happening.

3. Difficult to produce an orderly modular program

4. Difficult to handle multiple segments like if the source program is in a

different language. eg. one subroutine is assembly language & another

subroutine is FORTRAN

GENERAL LOADER SCHEME
General Loader Scheme :

In this loader scheme, the source program is converted to object

program by some translator (assembler). The loader accepts these

object modules and puts the machine instruction and data in an

executable form at their assigned memory. The loader occupies

the same portion of main memory.

Object
Module
 A

Object
Module
 B

Loader

A

B

Fig.: General Loading scheme

Program modules A and B are loaded in memory after linking. It is
ready for execution

32 10/28/2023

GENERAL LOADER SCEMES

Architecture of Loader

• Source program: This is a program written in a high-level

programming language that needs to be executed.

• Translator: This component, such as a compiler or interpreter,

converts the source program into an object program.

• Object program: This is the program in a machine-readable

form, usually in binary, that contains both the instructions and

data of the program.

• Executable object code: This is the object program that has

been processed by the loader and is ready to be executed.

GENERAL LOADER SCEMES

ADVANTAGES OF GENERAL LOADER
1. Smaller than Assembler

2. No reassembly is needed

3. Possible to write subroutines in different languages

4. There is no wastage of memory because assembler is

not placed in memory so more memory is available to

user.

5. Avoid drawbacks of Compile and Go Loader.

DISADVANTAGES OF GENERAL LOADER

• Some portion of memory occupied by loader

• General loader cannot handle different object model from

other computer.

• Dependenacy issues

Absolute Loader: It loads a program at a specific memory

location, specified in the program’s object code. This location is

usually absolute and does not change when the program is loaded

into memory.

• An Absolute loader is the simplest of all other loaders.

• It takes the output of Assembler and load into memory without

relocation.

• The output of the assembler can be stored on any machine

readable form of storage, But most commonly it is stored on

punched cards or magnetic tape, disk, or drum.

• It loads a binary program in memory for Execution .

ABSOLUTE LOADER

39 10/28/2023

 Binary program is stored in a file that contains:

 Header records: Contains load Origin ,Length of

code, load time execution starting address of

program.

 Transfer record: contains entry point of execution

 40 10/28/2023

ADVANTAGES OF ABSOLUTE
LOADER

1. It is simple to implement

2. No relocation is required.

3. The process of execution is efficient.

4. The task of loader becomes simpler as it simply obeys

the instruction regarding where to place the object code

to the main memory.

5. This scheme allows multiple programs or the source

programs written in different languages.

DISADVANTAGES OF ABSOLUTE
LOADER

1. Programmer must specify the starting address to the

assembler for the program where it should be loaded.

2. so programmer must know memory management as

well as memory status at any time.

3. It is very difficult to relocate in case of multiple

subroutine.

• In absolute loader 4 loader function are
performed by,

 Allocation: by programmer
 Linking: by programmer
 Relocation: by assembler
 Loading-by loader

43 10/28/2023

SUBROUTINE LINKAGE LOADER

Subroutine: In given program ,it is often needed to

perform a particular subtask many times on different data

values. such a subtask is usually called a subroutine.

Subroutine linkage method: The way in which a machine

makes it possible to call and return from subroutine is

referred to as its Subroutine linkage method

4. SUBROUTINE LINKAGE

ADVANTAGES OF SUBROUTINE
LINKAGE

1. Code reuse: Subroutines can be reused in multiple parts of a

program, which can save time and reduce the amount of code

that needs to be written.

2. Modularity: Subroutines help to break complex programs

into smaller, more manageable parts, making them easier to

understand, maintain, and modify.

3. Encapsulation: Subroutines provide a way to encapsulate

functionality, hiding the implementation details from other

parts of the program.

DISADVANTAGES OF SUBROUTINE
LINKAGE

1. Overhead: Calling a subroutine can incur some overhead, such

as the time and memory required to push and pop data on the

stack.

2. Complexity: Subroutine nesting can make programs more

complex and difficult to understand, particularly if the nesting

is deep or the control flow is complicated.

3. Side Effects: Subroutines can have unintended side effects,

such as modifying global variables or changing the state of the

program, which can make debugging and testing more difficult.

RELOCATING LOADER

A relocating loader is a type of loader that is used in

system software to load programs into memory and

adjust their addresses. It is responsible for dynamic

loading, address translation, and using a symbol

table to adjust the addresses of a program's

instructions and data.

5. RELOCATING LOADER

5. RELOCATING LOADER
Relocation is the process of modifying the address used by program such that

program can execute correctly.

E.g. assume that a program A calls a function F1. The program A and the

function F1 must be linked with each other. But where we have to load in main

storage? A possible solution would be to load them according to address

assigned when they were translated.

Case (I) At the time of translation A has been given storage area from 100 to

250 while F occupies area between 400 to 500. If we were to load these

programs at their translated address , a lot of storage will be wasted.

5. RELOCATING LOADER
Case (II) at the time of translated, both A and F1 may have been translated

with the identical start address 100. A goes from 100 to 250 and F1 goes

from 100 to 200. These two modules cannot co-exist at same. The linker

must relocate A and F1 to avoid address conflict or storage waste A possible

relocation is shown in figure.

It may be noted that relocation more than simply moving a program from one are to

another in the storage. It refers to adjustment of address fields and not to movement of a

program.

 It avoid reassembling of all subroutines when

single subroutine change.

 All 4 function are performed (i.e. Allocation,

Loading, Linking & reallocation).

 Transfer vector is used to solve the problem of

linking & Program length info to solve

allocation.
52 10/28/2023

 No suited for loading external data.

 Transfer vector increase the size.

 Does not facilitate access to data segment that

can be shared.

53 10/28/2023

6. DIRECT LINKING LOADER

 It is type of Re-locatable Loader.

 It is most common type of loader.

 It allows the programmer to use multiple

procedure segments and multiple data segments.

 The assembler should give the following

information to the loader:

1.The length of the object code segment.

2.A list of all symbols which are not defined in the

current segment but can be used in the current

segment.

10/28/2023 56

3.A list of all symbols which are defined in the

current segment but can be referred in the current

segment.

4.Information about address constants.

5.Machine code translation of the source program and

relative address.

 To place the object code in the memory there are

two situations:1. Address of the object code could

be absolute.2. The address of object code can be

relative.

10/28/2023 57

 The list of symbols not defined in the current

segment but used in the current segment are stored

in a data structure called USE table.

 The lists of symbols defined in the current segment

and referred by the other segments are stored in a

data structure called DEFINITION table.

10/28/2023 58

 Assembler generates 4 types of cards in the
object desk:

 ESD:External Symbol Dictionary (ESD) record:

 TXT: (TXT) records.
 RLD: Relocation and Linkage Directory (RLD):
 END :End of object deck

59 10/28/2023

1.ESD:External Symbol Dictionary (ESD) record:
Card contain information about all symbol that are

defined in this program, but that may reference
elsewhere, and all symbol referenced in this
program but defined elsewhere.

60

Source object
record
no./card no.

symbol Type Relative
Location

Length

1 MAIN SD 0 36

2 RESULT LD 32 -

3 SUM ER - -
10/28/2023

 Type:
 SD: segment definition: symbol in segment
 LD: Local definition: symbol is defined in this

program but it can be referenced by other
program.

 ER: External symbol: defined in some external
program.

61 10/28/2023

 2. TXT: (TEXT) records.
 Text card contains actual object code.(translated

source code).

62

Source object
record no.

Relative Location Object code

1 0

2 32

3 -

10/28/2023

3. RLD: Relocation and Linkage Directory (RLD):
 Card contain information about those locations in

the program whose content depend on the
address at which the program is placed

63

Source
object
record no.

ESD_ID Length(in
Byte)

Flag + or - Relative
address

+ sign denote that something must be added to the constant

4.END: card indicate the end of object code and
specifies the starting address for execution if
assembled routine is the main program.

64 10/28/2023

Allow multiple procedure and data segment.

Allow independent translation of the program.

Relocation Facility.

65 10/28/2023

 Not suitable in multitasking.

 It is necessary to allocate, relocate, link, and

load all of the subroutines each time in order

to execute a program

 loading process can be extremely time

consuming.

66 10/28/2023

 Design of direct linking loader is more complicated
than absolute loader.

 Input to loader is object module and this is divide into
4 section ESD,TXT,RLD,END

 It requires two passes to complete the linking process

 Pass I: assigns addresses to all external symbols
(Uses Global EST: GEST)

 Pass II: performs actual loading, relocation and
linking.

67 10/28/2023

 In Pass I ,a Global External Symbol table(GEST) is
prepared.

 It contain every external symbol and corresponding
absolute address value.

68 10/28/2023

Object
Module

GEST

Copy of
object

records

Pass II Pass I
Main

Memory

Object
Module

69 10/28/2023

OVERLAY STRUCTURE
Overlays: The loader can load programs in chunks called

overlays, which allows programs to run in a smaller

memory space by only loading the needed parts of the

program at a time.

• Program execution need not be achieved by loading all the

parts of large program in memory.

• So,that we can reduce memory requirement of such program

by loading required parts of program in memory.

• Hence some parts of program are given the same load

address during linking.

• Therefore,at any time,only one of these parts of program can

be loaded in memory because loading of other parts that has

same load address will overwrite it.

10/28/2023 71

OVERLAY STRUCTURE

• Overlay is a part of program that has same load origin as some

other parts of the program .and the program which contains

overlays is called as overlay structured program.

• It consist of Permanently resident portion known as ROOT.

• Set of overlays that will be loaded in memory as per the

requirements.

• Overlay manager is linked with the root.

• Root is loaded in memory .
10/28/2023 72

OVERLAY STRUCTURE

EXAMPLE

• Suppose a program consisting of five subprograms (A{20k},B{20k},

C{30k}, D{10k}, and E{20k}) that require 100K bytes of core.

• Subprogram A only calls B, D and E;

• subprogram B only calls C and E;

• subprogram D only calls E

• subprogram C and E do not call any other routines

• Note that procedures B and D are never in used the same time;

neither are C and E.

 10/28/2023 73

OVERLAY STRUCTURE

10/28/2023 74

OVERLAY STRUCTURE

10/28/2023 75

ADVANTAGES OF OVERLAY STRUCTURE

1. Increased memory utilization: Overlays allow multiple programs to share the

same physical memory space, increasing memory utilization and reducing the

need for additional memory.

2. Reduced load time: Only the necessary parts of a program are loaded into

memory, reducing load time and increasing performance.

3. Improved reliability: Overlays reduce the risk of memory overflow, which can

cause crashes or data loss.

4. Reduce memory requirement

5. Reduce time requirement

10/28/2023 76

DISADVANTAGES OF OVERLAY STRUCTURE

1. Complexity: Overlays can be complex to implement and manage, especially for

large programs.

2. Performance overhead: The process of loading and unloading overlays can

result in increased CPU and disk usage, which can slow down performance.

3. Compatibility issues: Overlays may not work on all hardware and software

configurations, making it difficult to ensure compatibility across different

systems.

4. Overlap map must be specified by programmer

5. Programmer must know memory requirement

6. Overlapped module must be completely disjoint

7. Programming design of overlays structure is complex and not possible in all cases

What is linker? Why program relocation is required and

how is it performed?
Any usable program written in any language has to use functions /

subroutines. These functions could be either user defined functions

or they can be library functions.

For example, consider a program written in C language such a

program may contain calls to functions like printf(). During

program execution main program calls the function

1) The linking process makes address of modules known to each

other so that transfer of control takes place.

2) Passing of parameters is handled by the linker.

3) An external variable can be defined in one module and can be

used in another module.

SELF RELOCATING PROGRAM

Program relocatibility refers to the ability to load and execute a

given program into an arbitrary place in memory as opposed to a

fixed set of locations specified at program translation time

depending on how and when the mapping from virtual address

space to the physical address space takes place in given relocation:

(a) Static (b) Dynamic .

A self relocating program is a program which can perform the

relocation itself. Self relocating program contain the relocating

logic, so no need of a linker in that.

STATIC & DYNAMIC LINK LIBRARIES
1. Static Linking :

A static linker takes object files produced by the compiler

including library functions and produces and executable file.

The executable file contains a copy of every subroutine (user

defined or library function.) The biggest disadvantage of the

static linking is that each executable file contains its own

copy of the library routines. If many programs containing

same library routines are executed then memory is wasted.

STATIC & DYNAMIC LINK LIBRARIES
2. Dynamic Linking :

Dynamic linking defers much of the linking process until a

program starts running. Dynamic linking involves the

following steps:

1) A reference to an external module during run time causes

the loader to find the target module and load it.

2) Perform relocation during run time

Dynamic linking permits a program to load and unload

routines at run time.

STATIC & DYNAMIC LINK LIBRARIES

LINKER VS LOADER
BASIS FOR

COMPARISON
LINKER LOADER

Basic It generates the executable

module of a source

program.

It loads the executable module to

the main memory.

Input It takes as input, the object

code generated by an

assembler.

It takes executable module

generated by a linker.

Function It combines all the object

modules of a source code to

generate an executable

module.

It allocates the addresses to an

executable module in main

memory for execution.

Type/Approac

h

Linkage Editor, Dynamic

linker.

Absolute loading, Relocatable

loading and Dynamic Run-time

loading.

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

1. https://www.geeksforgeeks.org/basic-functions-of-loader/

2. https://www.geeksforgeeks.org/loader-in-compiler-design/

3. https://www.geeksforgeeks.org/compiler-and-go-loader/

4. https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-

memory/

5. https://www.geeksforgeeks.org/overlays-in-memory-management/

REFERENCES

https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/loader-in-compiler-design/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/compiler-and-go-loader/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/subroutine-subroutine-nesting-and-stack-memory/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/
https://www.geeksforgeeks.org/overlays-in-memory-management/

