
“Synchronization and

Concurrency Control”
Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

PVGCOE Computer Dept.

28 OCT 2023

.

CLASS : TE COMPUTER 2019

SUBJECT : SPOS (SEM-I)

UNIT : V

CONTENTS :-

1. Concurrency: Principle and issues with Concurrency

2. Mutual Exclusion, Hardware approach, Software

approach

3. Semaphore, Mutex and monitor

4. Reader writer problem, Producer Consumer problem,

Dining Philosopher problem.

5. Deadlocks: Principle of Deadlock, Deadlock prevention

6. Deadlock avoidance

7. Deadlock detection

8. Deadlock recovery.

Prof. Gharu Anand N. 2

Concurrency

Prof. Gharu Anand N. 3

4

Introduction of Concurrency
1. Concurrency is the execution of the multiple instruction

sequences at the same time.

2. It happens in the operating system when there are

several process threads running in parallel.

3. The running process threads always communicate with

each other through shared memory or message passing.

4. Concurrency results in sharing of resources result in

problems like deadlocks and resources starvation.

Prof. Gharu Anand N.

5

Introduction of Concurrency
5. It helps in techniques like coordinating execution of

processes, memory allocation and execution scheduling

for maximizing throughput..

Prof. Gharu Anand N.

6

Principle of Concurrency
Both interleaved and overlapped processes can be

viewed as examples of concurrent processes, they both

present the same problems.

The relative speed of execution cannot be predicted. It

depends on the following:

1. The activities of other processes

2. The way operating system handles interrupts

3. The scheduling policies of the operating system Prof. Gharu Anand N.

7

Problem in Concurrency
1. Sharing global resources –

Sharing of global resources safely is difficult. If two

processes both make use of a global variable and both

perform read and write on that variable, then the order

in which various read and write are executed is critical.

2. Optimal allocation of resources –

It is difficult for the operating system to manage the

allocation of resources optimally.
Prof. Gharu Anand N.

8

Problem in Concurrency
3. Locating programming errors –

It is very difficult to locate a programming error

because reports are usually not reproducible.

4. Locking the channel –

It may be inefficient for the operating system to simply

lock the channel and prevents its use by other processes.

Prof. Gharu Anand N.

9

Advantages of Concurrency
1. Running of multiple applications –

It enable to run multiple applications at the same time.

2. Better resource utilization –

It enables that the resources that are unused by one

application can be used for other applications.

3. Better average response time –

Without concurrency, each application has to be run to

completion before the next one can be run.
Prof. Gharu Anand N.

10

Disadvantages of Concurrency
1. It is required to protect multiple applications from one

another.

2. It is required to coordinate multiple applications through

additional mechanisms.

3. Additional performance overheads and complexities in

operating systems are required for switching among

applications.

4. Sometimes running too many applications concurrently

leads to severely degraded performance.
Prof. Gharu Anand N.

11

Disadvantages of Concurrency
1. It is required to protect multiple applications from one

another.

2. It is required to coordinate multiple applications through

additional mechanisms.

3. Additional performance overheads and complexities in

operating systems are required for switching among

applications.

4. Sometimes running too many applications concurrently

leads to severely degraded performance.
Prof. Gharu Anand N.

12

Issues of Concurrency

Non-atomic –

Operations that are non-atomic but interruptible by

multiple processes can cause problems.

Race conditions –

A race condition occurs of the outcome depends on

which of several processes gets to a point first.

Prof. Gharu Anand N.

13

Issues of Concurrency
3. Blocking –

Processes can block waiting for resources. A process could be

blocked for long period of time waiting for input from a terminal.

If the process is required to periodically update some data, this

would be very undesirable.

4. Starvation –

It occurs when a process does not obtain service to progress.

5. Deadlock –

It occurs when two processes are blocked and hence neither can

proceed to execute.
Prof. Gharu Anand N.

SYNCHRONIZATION

Prof. Gharu Anand N. 14

15

Synchronization in OS
On the basis of synchronization, processes are categorized

as one of the following two types:

1. Independent Process : Execution of one process does

not affects the execution of other processes.

2. Cooperative Process : Execution of one process affects

the execution of other processes.

“The procedure involved in preserving the appropriate order

of execution of cooperative processes is known as Process

Synchronization.” Prof. Gharu Anand N.

16

Synchronization Mechanism
• Race Condition :

A Race Condition typically occurs when two or more

threads try to read, write and possibly make the decisions

based on the memory that they are accessing concurrently.

• Critical Section :

The regions of a program that try to access shared resources

and may cause race conditions are called critical section. To

avoid race condition among the processes, we need to

assure that only one process at a time can execute within the

critical section.
Prof. Gharu Anand N.

17

Critical Section Problem
• Critical Section is the part of a program which tries to access shared

resources. That resource may be any resource in a computer like a

memory location, Data structure, CPU or any IO device.

• The critical section cannot be executed by more than one process at

the same time; operating system faces the difficulties in allowing and

disallowing the processes from entering the critical section.

• The critical section problem is used to design a set of protocols which

can ensure that the Race condition among the processes will never

arise.

Prof. Gharu Anand N.

18

Critical Section Problem
• Critical section is a code segment that can be accessed by only

one process at a time. Critical section contains shared variables

which need to be synchronized to maintain consistency of data

variables.

Prof. Gharu Anand N.

19

Critical Section Problem
• In the entry section, the process requests for entry in the Critical

Section.

• Any solution to the critical section problem must satisfy three

requirements:

1. Mutual exclusion

2. Progress

3. Bounded waiting

Prof. Gharu Anand N.

20

Requirements of Synchronization

mechanisms

• Primary

• Mutual Exclusion

Our solution must provide mutual exclusion. By Mutual

Exclusion, we mean that if one process is executing

inside critical section then the other process must not

enter in the critical section.

Prof. Gharu Anand N.

21

Requirements of Synchronization

mechanisms

• Primary

• Progress

Progress means that if one process doesn't need to

execute into critical section then it should not stop other

processes to get into the critical section.

Prof. Gharu Anand N.

22

Critical Section Problem

Prof. Gharu Anand N.

23

Requirements of Synchronization

mechanisms

• Secondary

• Bounded Waiting

• We should be able to predict the waiting time for

every process to get into the critical section. The

process must not be endlessly waiting for getting into

the critical section.

Prof. Gharu Anand N.

24

Requirements of Synchronization

mechanisms

• Secondary

• Architectural Neutrality

Our mechanism must be architectural natural. It means

that if our solution is working fine on one architecture

then it should also run on the other ones as well.

Prof. Gharu Anand N.

Interprocess communication

25

In computer science, inter-process communication or interprocess

communication (IPC) allows communicating processes to exchange the

data and information.

There are two methods of IPC :

1. Shared memory

2. Message passing

Prof. Gharu Anand N.

Interprocess communication

26

There are two primary models of inter process communication:

 shared memory and

 message passing.

Prof. Gharu Anand N.

Interprocess communication

27

 shared memory :

 In this, processes are interact with each other through shared variable;

 processes are exchange information by reading & writing data using

 shared variable.

 message passing :.

 in this, instead of reading or writing, processes send and receive the

 messages.

 send and receive functions are implemented in OS.

SEND (B, message)

RECEIVE (A, memory address)
Prof. Gharu Anand N.

Critical section

28

critical section is a piece of code that accesses a shared resource (data

structure or device) that must not be concurrently accessed by more than

one thread of execution.

Prof. Gharu Anand N.

Mutual Exclusion

29

A mutual exclusion (mutex) is a program in which Shared resource is not

allowed to access by more than one process at same time is called mutual

exclusion.

Prof. Gharu Anand N.

Semaphore in IPC
In computer science, a semaphore is a variable or abstract data

type used to control access to a common resource by multiple processes in

a concurrent system such as a multiprogramming operating system.

 Semaphore is a simply a variable. This variable is used to solve critical

section problem and to achieve process synchronization in the multi

processing environment

The two most common kinds of semaphores are counting semaphores and

binary semaphores. Counting semaphore can take non-negative integer

values and Binary semaphore can take the value 0 & 1. only. Prof. Gharu Anand N. 30

Types of Semaphore
Semaphores are a useful tool in the prevention of race conditions; however,

their use is by no means a guarantee that a program is free from these

problems. Semaphores which allow an arbitrary resource count are

called counting semaphores, while semaphores which are restricted to the

values 0 and 1 (or locked/unlocked, unavailable/available) are

called binary semaphores and are used to implement locks.

Prof. Gharu Anand N. 31

https://en.wikipedia.org/wiki/Lock_(computer_science)

Primitives of Semaphore
There are two types of Primitives :

1. wait()

2. Signal()

Prof. Gharu Anand N. 32

Monitor
 A monitor is a synchronization construct that allows threads to have both mutual

exclusion and the ability to wait (block) for a certain condition to become true.

 Monitors also have a mechanism for signaling other threads that their condition has

been met.

 A monitor consists of a mutex (lock) object and condition variables. A condition

variable is basically a container of threads that are waiting for a certain condition.

 Monitors provide a mechanism for threads to temporarily give up exclusive access

in order to wait for some condition to be met, before regaining exclusive access and

resuming their task.

Prof. Gharu Anand N. 33

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)

Monitor
ASPECTS SEMAPHORE MONITOR

Basic Semaphores is an integer variable

S.

Monitor is an abstract data

type.

Action The value of Semaphore S

indicates the number of shared

resources available in the system

The Monitor type contains

shared variables and the set

of procedures that operate on

the shared variable.

Access When any process access the

shared resources it perform wait()

operation on S and when it

releases the shared resources it

performs signal() operation on S.

When any process wants to

access the shared variables in

the monitor, it needs to

access it through the

procedures.

Condition

variable

Semaphore does not have

condition variables.

Monitor has condition

variables. Prof. Gharu Anand N. 34

IPC Problem
(Classical Problem of

Synchronization)

35 Prof. Gharu Anand N.

IPC Problem

36

1. Producer Consumer Problem

2. Reader Writer Problem

3. Dining Philosopher Problem

4. Sleeping Barber Problem

Prof. Gharu Anand N.

http://en.wikipedia.org/wiki/Producer-consumer_problem
http://en.wikipedia.org/wiki/Readers-writers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Sleeping_barber_problem

Producer-consumer problem

37

In computing, the producer–consumer problem (also known as

the bounded-buffer problem) is a classic example of a multi-

process synchronization problem. The problem describes two

processes, the producer and the consumer, who share a common,

fixed-size buffer used as a queue. The producer's job is to generate

data, put it into the buffer, and start again. At the same time, the

consumer is consuming the data (i.e., removing it from the buffer),

one piece at a time. The problem is to make sure that the producer

won't try to add data into the buffer if it's full and that the consumer

won't try to remove data from an empty buffer.

.

Prof. Gharu Anand N.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Buffer_(computer_science)
https://en.wikipedia.org/wiki/Queue_(data_structure)

Producer-consumer problem

38

The solution for the producer is to either go to sleep or discard data

if the buffer is full. The next time the consumer removes an item

from the buffer, it notifies the producer, who starts to fill the buffer

again. In the same way, the consumer can go to sleep if it finds the

buffer to be empty. The next time the producer puts data into the

buffer, it wakes up the sleeping consumer. The solution can be

reached by means of inter-process communication, typically

using semaphores. An inadequate solution could result in

a deadlock where both processes are waiting to be awakened. The

problem can also be generalized to have multiple producers and

consumers.
Prof. Gharu Anand N.

https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Deadlock

Reader - writer problem

39

The R-W problem is another classic problem for which design of

synchronization and concurrency mechanisms can be tested. The

producer/consumer is another such problem; the dining philosophers is

another.

Definition

 There is a data area that is shared among a number of processes.

 Any number of readers may simultaneously write to the data area.

 Only one writer at a time may write to the data area.

 If a writer is writing to the data area, no reader may read it.

 If there is at least one reader reading the data area, no writer may write to

it.

 Readers only read and writers only write

 A process that reads and writes to a data area must be considered a writer

(consider producer or consumer)
Prof. Gharu Anand N.

Dining philosopher problem

40

The Dining Philosopher Problem – The Dining Philosopher Problem states

that K philosophers seated around a circular table with one chopstick

between each pair of philosophers. There is one chopstick between each

philosopher. A philosopher may eat if he can pickup the two chopsticks

adjacent to him. One chopstick may be picked up by any one of its adjacent

followers but not both.

Prof. Gharu Anand N.

Barber sleeping problem

41 Prof. Gharu Anand N.

DEADLOCK

• A deadlock is a situation in which two computer programs sharing the

same resource are effectively preventing each other from accessing the

resource, resulting in both programs ceasing to function. The earliest

computer operating systems ran only one program at a time.

42 Prof. Gharu Anand N.

DEADLOCK condition

43

Mutual Exclusion: One or more than one resource are non-

sharable (Only one process can use at a time)

Hold and Wait: A process is holding at least one resource

and waiting for resources.

Prof. Gharu Anand N.

DEADLOCK condition

44

No Preemption: A resource cannot be taken from a process

unless the process releases the resource.

Circular Wait: A set of processes are waiting for each other

in circular form.

Prof. Gharu Anand N.

Methods for handling
deadlock

• There are three ways to handle deadlock

1) Deadlock prevention or avoidance: The idea is to not

let the system into deadlock state.

• 2) Deadlock detection and recovery: Let deadlock occur,

then do preemption to handle it once occurred.

• 3) Ignore the problem all together: If deadlock is very

rare, then let it happen and reboot the system. This is the

approach that both Windows and UNIX take. 45 Prof. Gharu Anand N.

Deadlock recovery
• Preemption We can take a resource from one process and give it to

other. This will resolve the deadlock situation, but sometimes it does

causes problems.

• Rollback In situations where deadlock is a real possibility, the system

can periodically make a record of the state of each process and when

deadlock occurs, roll everything back to the last checkpoint, and restart,

but allocating resources differently so that deadlock does not occur.

• Kill one or more processesThis is the simplest way, but it works.
46 Prof. Gharu Anand N.

Deadlock prevention
We can prevent Deadlock by eliminating any of the above four condition.

Eliminate Mutual Exclusion

It is not possible to dis-satisfy the mutual exclusion because some resources, such as the tap drive and

printer, are inherently non-shareable.

Eliminate Hold and wait

1. Allocate all required resources to the process before start of its execution, this way hold and wait

condition is eliminated but it will lead to low device utilization. for example, if a process requires

printer at a later time and we have allocated printer before the start of its execution printer will

remained blocked till it has completed its execution.

2. Process will make new request for resources after releasing the current set of resources. This

solution may lead to starvation.

Eliminate No Preemption

Preempt resources from process when resources required by other high priority process.

Eliminate Circular Wait

Each resource will be assigned with a numerical number. A process can request for the resources only

in increasing order of numbering.

For Example, if P1 process is allocated R5 resources, now next time if P1 ask for R4, R3 lesser than

R5 such request will not be granted, only request for resources more than R5 will be granted.

Prof. Gharu Anand N. 47

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/holdnwait.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/holdnwait.png

Deadlock Avoidance
Banker’s Algorithm

Banker's algorithm is a deadlock avoidance algorithm. It is named so

because this algorithm is used in banking systems to determine whether a

loan can be granted or not.

Consider there are n account holders in a bank and the sum of the money in

all of their accounts is S. Everytime a loan has to be granted by the bank, it

subtracts the loan amount from the total money the bank has. Then it

checks if that difference is greater than S. It is done because, only then, the

bank would have enough money even if all the n account holders draw all

their money at once.

Banker's algorithm works in a similar way in computers. Whenever a new

process is created, it must exactly specify the maximum instances of each

resource type that it needs. Prof. Gharu Anand N. 48

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/holdnwait.png

Deadlock Avoidance
Let us assume that there are n processes and m resource types. Some data structures

are used to implement the banker's algorithm. They are:

Available: It is an array of length m. It represents the number of available resources

of each type. If Available[j] = k, then there are k instances available, of resource

type Rj.

Max: It is an n x m matrix which represents the maximum number of instances of

each resource that a process can request. If Max[i][j] = k, then the process Pi can

request atmost k instances of resource type Rj.3

Allocation: It is an n x m matrix which represents the number of resources of each

type currently allocated to each process. If Allocation[i][j] = k, then process Pi is

currently allocated k instances of resource type Rj.

Need: It is an n x m matrix which indicates the remaining resource needs of each

process. If Need[i][j] = k, then process Pi may need k more instances of resource

type Rj to complete its task.

Need[i][j] = Max[i][j] - Allocation [i][j] Prof. Gharu Anand N. 49

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/holdnwait.png

Bankers Algorithms

50 Prof. Gharu Anand N.

Bankers Algorithms

51 Prof. Gharu Anand N.

Bankers Algorithms

52 Prof. Gharu Anand N.

Bankers Algorithms

53 Prof. Gharu Anand N.

Bankers Algorithms

54 Prof. Gharu Anand N.

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

