
“MEMORY MANAGEMENT” 

Prepared By 

Prof. Anand N. Gharu  
(Assistant Professor) 

Computer Dept. 

05 NOV 2022 

. 

CLASS      : TE COMPUTER 2019 

SUBJECT : SPOS (SEM-I) 

UNIT         : VI 



Memory Management 

Source: cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx 

http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx
http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx
http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx


SYLLABUS : 

Introduction: Memory Management concepts, Memory Management 

requirements.  

Memory Partitioning: Fixed Partitioning, Dynamic Partitioning, Buddy 
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Virtual Memory (VM): Concepts, Swapping, VM with Paging, Page 

Table Structure, Inverted Page Table, Translation Look aside Buffer, 

Page Size, VM with Segmentation, VM with Combined paging and 

segmentation.  

Page Replacement Policies: First In First Out (FIFO), Last Recently 
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Content 

• Memory management: 
• Review of Programming Model of Intel 80386, 
• Contiguous and non-contiguous, 
• Swapping, 
• Paging, 
• Segmentation, 
• Segmentation with Paging. 
• Virtual Memory: 

– Background, 
– Demand paging, 
– Page replacement scheme- 

• FIFO, 
• LRU, 
• Optimal, 
• Thrashing. 

• Case Study: Memory Management in multi-cores OS. 
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PAGE REPLACENT ALGORITHMS 

1. FIFO Page Replacement Algorithm 

2. LIFO Page Replacement Algorithm 

3. LRU Page Replacement Algorithm 

4. Optimal Page Replacement Algorithm 

5. Random Page Replacement Algorithm 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

1. FIFO Page Replacement Algorithm- 

• As the name suggests, this algorithm works on the principle of “First in 

First out“. 

• It replaces the oldest page that has been present in the main memory for 

the longest time. 

• It is implemented by keeping track of all the pages in a queue. 

 

2. LRU Page Replacement Algorithm – 

As the name suggests, this algorithm works on the principle of “Last in 

First out“. 

It replaces the newest page that arrived at last in the main memory. 

It is implemented by keeping track of all the pages in a stack. 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

3. Optimal Page Replacement Algorithm- 

•  This algorithm replaces the page that will not be referred by the CPU 

in future for the longest time. 

• It is practically impossible to implement this algorithm. 

• This is because the pages that will not be used in future for the longest 

time can not be predicted. 

• However, it is the best known algorithm and gives the least number of 

page faults. 

• Hence, it is used as a performance measure criterion for other 

algorithms. 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

1. FIFO : 

1. First In First Out (FIFO): This is the simplest page replacement 

algorithm. In this algorithm, the operating system keeps track of all 

pages in the memory in a queue, the oldest page is in the front of the 

queue. When a page needs to be replaced page in the front of the queue 

is selected for removal. 



10 

PAGE REPLACENT ALGORITHMS 
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1. FIFO : 

Advantages 

Simple and easy to implement. 

Low overhead. 

 

Disadvantages 

Poor performance. 

Doesn’t consider the frequency of use or last used time, simply replaces 

the oldest page. 

Suffers from Belady’s Anomaly(i.e. more page faults when we increase 

the number of page frames). 
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PAGE REPLACENT ALGORITHMS 
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1. FIFO : 

Example 1: Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3 

page frames.Find the number of page faults. 
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PAGE REPLACENT ALGORITHMS 
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1. FIFO : 

For Example: 

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2, 

3 with frame size 4(i.e. maximum 4 pages in a frame). 

Total Page Fault = 9 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

1. FIFO : 

Example: Consider the Pages referenced by the CPU in the order are 6, 

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1 

 Number of Page Faults = 9  
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

1. FIFO : 

Example: Consider the Pages referenced by the CPU in the order are 6, 

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1 
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PAGE REPLACENT ALGORITHMS 
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2. LRU : 

2. Least Recently Used: In this algorithm, page will be replaced 

which is least recently used.  

 

Advantages 

1. Efficient. 

2. Doesn't suffer from Belady’s Anomaly. 

 

Disadvantages 

1. Complex Implementation. 

2. Expensive. 

3. Requires hardware support. 
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PAGE REPLACENT ALGORITHMS 
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2. LRU : 

2. Least Recently Used: In this algorithm, page will be replaced 

which is least recently used.  

Example-3: Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 

0, 3, 2, 3 with 4 page frames. Find number of page faults.  
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

2. LRU : 

Example: Consider the Pages referenced by the CPU in the order are 6, 

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1, 7, 9, 6 

The number of Page Faults = 12  
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

2. LRU : 

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2, 

3 with frame size 4(i.e. maximum 4 pages in a frame). 

Total Page Fault = 8 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

3. OPT : 

3. Optimal Page replacement: In this algorithm, pages are replaced 

which would not be used for the longest duration of time in the future.  
 

Advantages 

1. Easy to Implement. 

2. Simple data structures are used. 

3. Highly efficient. 

 

Disadvantages 

1. Requires future knowledge of the program. 

2. Time-consuming. 
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PAGE REPLACENT ALGORITHMS 

Prof. Gharu Anand N. 

3. OPT : 

3. Optimal Page replacement: In this algorithm, pages are replaced 

which would not be used for the longest duration of time in the future.  
 

Example-2: Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 

3, 2, 3 with 4 page frame. Find number of page fault.  
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PAGE REPLACENT ALGORITHMS 
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3. OPT : 

Example: Consider the Pages referenced by the CPU in the order are 6, 

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1, 7, 9, 6 

The number of Page Faults = 8  
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PAGE REPLACENT ALGORITHMS 
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3. OPT : 

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2, 

3 with frame size 4(i.e. maximum 4 pages in a frame). 

Total Page Fault = 6 
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First, Best and Worst Fit algorithms 
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Processes need execution time/storage space in memory blocks. OS has 

various algorithms to allocate in-coming processes to available memory 

blocks. 

 

The following are the most used algorithms – 

 

1. First Fit 

2. Best Fit 

3. Worst Fit 
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First, Best and Worst Fit algorithms 
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1. First fit : 

This method works as for any process Pn, the OS searches from starting 

block again and again and allocates a block to process Pn such that – 

 

Block is available  

Can fit the process 

In simple words First Fit algorithm finds, the first block to fix the 

process. 

 

In the given example, let us assume the jobs and the memory 

requirements as the following: 
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First, Best and Worst Fit algorithms 
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1. First fit : 
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First, Best and Worst Fit algorithms 

Prof. Gharu Anand N. 

2. Best fit : 

This method works as for any process Pn, the OS searches from starting 

block again and again and allocates a block to process Pn such that – 

 

1. Block can accommodate process 

2. Memory wastage is minimum 

https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/ 
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First, Best and Worst Fit algorithms 
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2. Best fit : 
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First, Best and Worst Fit algorithms 
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3. Worst fit : 

This method works as for any process Pn, the OS searches from starting 

block again and again and allocates a block to process Pn such that – 

 

1. Block can accommodate process 

2. Memory wastage is maximum 
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First, Best and Worst Fit algorithms 
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3. Worst fit : 



• We have seen how CPU can be shared by a set  
of processes 

– Improve system performance 

– Process management 

• Need to keep several process in memory 

– Share memory 

• Learn various techniques to manage memory 

– Hardware dependent 

Memory management 



Memory management 

What are we going to learn? 

• Basic Memory Management: logical vs.  
physical address space, protection, contiguous  
memory allocation, paging, segmentation,  
segmentation with paging. 

 
• Virtual Memory: background, demand paging,  

performance, page replacement, page  
replacement algorithms (FCFS, LRU), allocation  
of frames, thrashing. 



Review of Programming Model of  
80386 



Background 

• Program must be brought (from disk) into 
memory 

• Fetch-decode-execute cycle 

• Memory unit only sees a stream of  
addresses + read requests, or address + data  
and write requests 

• Sequence of memory addresses generated  
by running program 

CPU 



Logical vs. Physical Address Space 

Logical address – generated by the CPU; also 
referred to as virtual address 

Physical address – address seen by the memory  
unit 

• Logical address space is the set of all logical  
addresses generated by a program 

• Physical address space is the set of all  
physical addresses generated by a program 

CPU 



• Protection of memory required to ensure  
correct operation 

Background 
Multiple processes resides in memory 

1. Protect OS 
2. Protect user processes 



Base and Limit Registers 

• A pair of base and limit registers define  
the logical address space 



Hardware Address Protection with Base and Limit Registers 

• OS loads the base & limit reg. 
• Privileged instruction 



Address Binding 

• Process resides in main memory 

• Associate each data element with memory address 

• Further, addresses represented in different ways at  
different stages of a program’s life 

– Source code addresses usually symbolic 

– Compiled code addresses bind to relocatable addresses 

• i.e. “14 bytes from beginning of this module” 

– Linker or loader will bind relocatable addresses to absolute  
addresses 

• i.e. 74014 



Multistep Processing of a User  
Program 



Binding of Instructions and Data to  
Memory 

• Address binding of instructions and data to memory  
addresses can happen at three different stages 
– Compile time: If memory location known a priori,  

absolute code can be generated; must recompile code if  
starting location changes 

– Load time: Must generate relocatable code if memory  
location is not known at compile time 

– Execution time: If the process can be moved during its  
execution from one memory segment to another 
• Binding delayed until run time 

• Need hardware support for address maps (e.g., base and limit  
registers) 



Logical vs. Physical Address Space 

Logical address – generated by the CPU; also referred to 
as virtual address 

Physical address – address seen by the memory unit 

 
• Logical and physical addresses are the same in  

compile-time and load-time address-binding  
schemes; 

• logical (virtual) and physical addresses differ in  
execution-time address-binding scheme 

• Logical address space is the set of all logical  
addresses generated by a program 

• Physical address space is the set of all physical  
addresses generated by a program 

CPU 



Memory-Management Unit (MMU) 

• Hardware device that at run time maps virtual to physical address 
 
• Many methods possible 
 
• To start, consider simple scheme where the value in the  

relocation register is added to every address generated by a user  
process at the time it is sent to memory 
– relocation register 
– MS-DOS on Intel 80x86 used 4 relocation registers 

 
• The user program deals with logical addresses (0 to max); it  

never sees the real physical addresses (R to R+max) 
– Say the logical address 25 
– Execution-time binding occurs when reference is made to location  

in memory 
– Logical address bound to physical addresses 



Dynamic relocation using a  
relocation register 

Relocatable  
code 

14000 



Multiple processes resides in memory 

Contiguous Allocation 



Contiguous Allocation 

• Main memory usually divided into two  
partitions: 

– Resident operating system, usually held in low  
memory 

– User processes then held in high memory 

– Each process contained in single contiguous  
section of memory 



Contiguous Allocation (Cont.) 

• Multiple-partition allocation 
– Divide memory into several Fixed size partition 

– Each partition stores one process 

– Degree of multiprogramming limited by number of  
partitions 

– If a partition is free, load process from job queue 

– MFT (IBM OS/360) 



Contiguous Allocation (Cont.) 
• Multiple-partition allocation 

– Variable partition scheme 
– Hole – block of available memory; holes of various size are 

scattered throughout memory 
– Keeps a table of free memory 
– When a process arrives, it is allocated memory from a hole large  

enough to accommodate it 
– Process exiting frees its partition, adjacent free partitions  

combined 
– Operating system maintains information about: 

a) allocated partitions b) free partitions (hole) 

OS 

process 5 

 
 

process 8 

process 2 

OS 

process 5 

process 2 

OS 

process 5 

process 9 

process 2 

OS 

process 5 

process 9 

process 10 

process 2 

OS 

 

 

Hole 



Dynamic Storage-Allocation Problem 

How to satisfy a request of size n from a list of free holes?  

Dynamic storage allocation problem 

• First-fit: Allocate the first hole that is big enough 

• Best-fit: Allocate the smallest hole that is big enough; must search 
entire list, unless ordered by size 
– Produces the smallest leftover hole 

• Worst-fit: Allocate the largest hole; must also search entire list 
– Produces the largest leftover hole 



Hardware Support for Relocation  
and Limit Registers 

• Relocation registers used to protect user processes from each other, and from changing 
operating-system code and data 
• Relocation register contains value of smallest physical address 
• Limit register contains range of logical addresses – each logical address must be less  

than the limit register 
• Context switch 
• MMU maps logical address dynamically 



Fragmentation 

• Processes loaded and removed from memory 
– Memory is broken into little pieces 

 
• External Fragmentation – total memory space  

exists to satisfy a request, but it is not contiguous 
 

 
• First fit analysis reveals that given N blocks  

allocated, 0.5 N blocks lost to fragmentation 
– 1/3 may be unusable -> 50-percent rule 



Fragmentation (Cont.) 

• Reduce external fragmentation by compaction 
– Shuffle memory contents to place all free memory  

together in one large block 

– Compaction is possible only if relocation is dynamic,  
and is done at execution time 
• Change relocation reg. 

– Cost 

 
• Internal Fragmentation – allocated memory may  

be slightly larger than requested memory; this size  
difference is memory internal to a partition, but  
not being used 





Paging 

• Physical address space of a process can be noncontiguous; 
– process allocates physical memory whenever the latter is available 

• Divide physical memory into fixed-sized blocks called frames 
– Size is power of 2, between 512 bytes and 16 Mbytes 

 
• Divide logical memory into blocks of same size called pages 

– To run a program of size N pages, need to find N free frames and load  
program 

 

 
• Backing store likewise split into pages 

 
• Set up a page table to translate logical to physical addresses 

 
• System keeps track of all free frames 



Paging Model of Logical and Physical Memory 

page table to translate logical to physical  
addresses 



Address Translation Scheme 

• Address generated by CPU is divided into: 
– Page number (p) – used as an index into a page table 

• which contains base address of each page in physical memory 

– Page offset (d) – offset within a page 
• combined with base address to define the physical memory address that  

is sent to the memory unit 

age number page offset 

p d 

p 

 

 
m - n n 

– For given logical address space 2m and page size 2n 

offset 
page 



Paging Hardware 



Paging Example 

n=2 and m=4 32-byte  

memory and 4-byte pages 

Logical address = 16  
Page size=4 
Physical memory=32 

User’s view 

Logical address 0  
(0*4+0) 
Physical address:  
(5*4+0)=20 

Logical address 3  
(0*4+3) 
Physical address:  
(5*4+0)=23 

Logical address 4 
(1*4+0) 
Physical address:  
(6*4+0)=24 

Logical address 13 
(3*4+1) 
Physical address:  
(2*4+1) 

Run time address binding 



Paging 

• External fragmentation?? 
• Calculating internal fragmentation 

– Page size = 2,048 bytes 
– Process size = 72,766 bytes 
– 35 pages + 1,086 bytes 
– Internal fragmentation of 2,048 - 1,086 = 962 bytes 

• So small frame sizes desirable? 
– But increases the page table size 
– Poor disk I/O 
– Page sizes growing over time 

• Solaris supports two page sizes – 8 KB and 4 MB 

• User’s view and physical memory now very different 
– user view=> process contains in single contiguous memory space 

• By implementation process can only access its own memory 
– protection 



• Each page table entry 4 bytes (32 bits) long 

• Each entry can point to 232 page frames 

• If each frame is 4 KB 

• The system can address 244 bytes (16TB) of  
physical memory 

Virtual address space 16MB.  
Page table size? 



• Process P1 arrives 

• Requires n pages => n frames must be  
available 

• Allocate n frames to the process P1 

• Create page table for P1 



Free Frames 

After allocation 

RAM 

Before allocation 

Frame table 

RAM 

Use’s view 
System’s view 



Implementation of Page Table 
• For each process, Page table is kept in main memory 

• Page-table base register (PTBR) points to the page table 

• Page-table length register (PTLR) indicates size of the  
page table 

• In this scheme every data/instruction access requires two  
memory accesses 
– One for the page table and one for the data / instruction 

• The two memory access problem can be solved by the  
use of a special fast-lookup hardware cache called  
associative memory or translation look-aside buffers  
(TLBs) 



Associative memory 



Associative Memory 
• Associative memory – parallel search 

• Address translation (p, d) 
– If p is in associative register, get frame # out 
– Otherwise get frame # from page table in memory 

Page # Frame # 



Implementation of Page Table 
• For each process, Page table is kept in main memory 

• Page-table base register (PTBR) points to the page table 

• Page-table length register (PTLR) indicates size of the page table 

• In this scheme every data/instruction access requires two memory accesses 
– One for the page table and one for the data / instruction 

• The two memory access problem can be solved by the use of a special fast-lookup  
hardware cache called associative memory or translation look-aside buffers (TLBs) 

 
• TLBs typically small (64 to 1,024 entries) 
 
• On a TLB miss, value is loaded into the TLB for faster access next time 

– Replacement policies must be considered (LRU) 
– Some entries can be wired down for permanent fast access 

 
 

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely  
identifies each process (PID) to provide address-space protection for that process 
– Otherwise need to flush at every context switch 



Paging Hardware With TLB 



Effective Access Time 
• Associative Lookup =  time unit 

– Can be < 10% of memory access time 
 

• Hit ratio =  
– Hit ratio – percentage of times that a page number is found in the  

associative registers; ratio related to size of TLB 
 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access 

• Effective Access Time (EAT) 
EAT = (100 + )  + (200 + )(1 – ) 

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access 
– EAT = 0.80 x 120 + 0.20 x 220 = 140ns 

• Consider better hit ratio ->  = 98%,  = 20ns for TLB search, 100ns for 
memory access 
– EAT = 0.98 x 120 + 0.02 x 220 = 122ns 



Memory Protection 
• Memory protection implemented by associating protection bit  

with each frame to indicate if read-only or read-write access is  
allowed 
– Can also add more bits to indicate page execute-only, and so on 

• Valid-invalid bit attached to each entry in the page table: 
– “valid” indicates that the associated page is in the process’ logical  

address space, and is thus a legal page 
– “invalid” indicates that the page is not in the process’ logical 

address space 
– Or use PTLR 

 

• Any violations result in a trap to the kernel 



Valid (v) or Invalid (i)  
Bit In A Page Table 

14 bit address space (0 to 16383)  
Page size 2KB 

Process P1 uses only 0 to 10468 

Internal fragmentation Use of PTLR (length) 

Page 0 

Page 1 

Page 2 

Page 3 

P1 

P2 



• System with 40 users 

– Use common text editor 

• Text editor contains 150KB code 50KB data (page size 50KB) 

– 8000KB! 

• Shared code 

– One copy of read-only (reentrant) code shared among  
processes (i.e., text editors, compilers, window systems) 
• Code never changes during execution 

• Only one copy of the editor in the memory 

• Total memory consumption 
– 40*50+150=2150KB 

Shared Pages Example 



Shared Pages Example 



Data share: example 

int main() 
{ 

int shmid,f,key=3,i,pid;  
char *ptr; 

shmid=shmget((key_t)key,100,IPC_CREAT|0666);  
ptr=shmat(shmid,NULL,0); 
printf("shmid=%d ptr=%u\n",shmid, ptr);  
strcpy(ptr,"hello"); 

i=shmdt((char*)ptr); 

} 

int main() 
{ 

int shmid,f,key=3,i,pid;  
char *ptr; 

shmid=shmget((key_t)key,100,IPC_CREAT|0666);  
ptr=shmat(shmid,NULL,0); 
printf("shmid=%d ptr=%u\n",shmid, ptr);  
printf("\nstr %s\n",ptr); 

} 

writer.c 
reader .c 

ptr 
Shared 
memory 



Structure of the Page Table 
• Memory requirement for page table can get huge using straight-  

forward methods 
– Consider a 32-bit logical address space as on modern computers 
– Page size of 4 KB (212) 
– Page table would have 1 million entries 220 (232 / 212) 
– If each entry is 4 bytes -> 4 MB of physical address space / memory for  

page table alone 
• That amount of memory used to cost a lot 
• Don’t want to allocate that contiguously in main memory 

 

 
• Hierarchical Paging 
 
• Hashed Page Tables 
 
• Inverted Page Tables 



Hierarchical Page Tables 

• Break up the page table into multiple  
pages 

 

 
• We then page the page table 

 

 
• A simple technique is a two-level page  

table 



Two-Level Page-Table Scheme 



Two-Level Paging Example 

displacement within the page of the inner page table 

age number page offset 

p1 p2 d 

• A logical address (on 32-bit machine with 4KB page size) is  
divided into: 
– a page number consisting of 20 bits 
– a page offset consisting of 12 bits 

• Since the page table is paged, the page number is further  
divided into: 
– a 10-bit page number 
– a 10-bit page offset 

• Thus, a logical address is as follows: 
 

p 

 
 

10 10 12 

• where p1 is an index into the outer page table, and p2 is the 



Two-Level Page-Table Scheme 

p1 

p2 

d 

Each divided page table  
size=210 *4bytes=4KB 
=Page size 

Pentium II 



Address-Translation Scheme 

Pentium II 



64-bit Logical Address Space 
• Even two-level paging scheme not sufficient 
• If page size is 4 KB (212) 

– Then page table has 252 entries 
– If two level scheme, inner page tables could be 210 4-byte entries 
– Address would look like 

42 10 12 

 
– Outer page table has 242 entries or 244 bytes 
– One solution is to add a 2nd outer page table 
– But in the following example the 2nd outer page table is still 234 

bytes in size 
• And possibly 4 memory access to get to one physical memory location 

outer page 

p1 p2 d 

inner page 
page offset 



Three-level Paging Scheme 

SPARC (32 bits), Motorola 68030 support three and four level paging respectively 



Hashed Page Tables 

• Common in virtual address spaces > 32 bits 
 
• The page number is hashed into a page table 

– This page table contains a chain of elements hashing to the same  
location 

 
• Each element contains (1) the page number (2) the value of the 

mapped page frame (3) a pointer to the next element 

 
• Virtual page numbers are compared in this chain searching for a  

match 
– If a match is found, the corresponding physical frame is extracted 



Hashed Page Table 



Inverted Page Table 

• Rather than each process having a page table and  
keeping track of all possible logical pages, track all frames 

 
• One entry for each frame 

 
• Entry consists the page number stored in that frame, with  

information about the process that owns that page 

 
• Decreases memory needed to store each page table, 

– but increases time needed to search the table when a page  
reference occurs 



Inverted Page Table Architecture 
64 bit UltraSPARC, PowerPC, 

Address space ID 



Segmentation 

main program  
procedure  
function  
method  
object 
local variables, global variables  
common block 
stack 
symbol table  
arrays 

• Memory-management scheme that supports user view of  
memory 

• A program is a collection of segments 
– A segment is a logical unit such as: 

Compiler generates the 
segments 
Loader assign the seg# 



User’s View of a Program 

User specifies each address  
by two quantities 
(a) Segment name 
(b) Segment offset 
 
 
Logical address contains the  
tuple 
<segment#, offset> 

• Variable size segments without order 
• Length=> purpose of the program 
• Elements are identified by offset 



Logical View of Segmentation 

1 

 
3 

2 

4 

1 

4 

2 

 
3 

user space physical memory space 

• Long term scheduler finds and allocates memory for all segments of a program 
• Variable size partition scheme 

Logical  
address  
space 

Logical address <segment-number, offset> 







Memory image 



Executable file and virtual address 

 

Virtual address  
space 

a.out 

Symbol table 

Name address 

SQR 0 

SUM 4 

0 
4 

Load 
ADD 

0 
4 

<CODE, 0> 
<CODE, 2> 

Load  
ADD 

<ST,0> 
<ST,4> 

Paging view 

Segmentation view 



Segmentation Architecture 

• Logical address consists of a two tuple: 
<segment-number, offset> 

• Segment table – maps two-dimensional logical address  
to physical address; 

• Each table entry has: 
– base – contains the starting physical address where the 

segments reside in memory 
– limit – specifies the length of the segment 

• Segment-table base register (STBR) points to the  
segment table’s location in memory 

• Segment-table length register (STLR) indicates number  
of segments used by a program; 

segment number s is legal if s < STLR 



Example of Segmentation 



Segmentation Hardware 



Example of Segmentation 



Segmentation Architecture 

• Protection 

• Protection bits associated with segments 
– With each entry in segment table associate: 

• validation bit = 0  illegal segment 

• read/write/execute privileges 

• Code sharing occurs at segment level 

• Since segments vary in length, memory allocation is  
a dynamic storage-allocation problem 
– Long term scheduler 

– First fit, best fit etc 

• Fragmentation 



Segmentation with Paging 

Key idea: 

Segments are splitted into multiple pages 

 
Each page is loaded into frames in the memory 



Segmentation with Paging 

• Supports segmentation with paging 
– Each segment can be 4 GB 
– Up to 16 K segments per process 
– <selector(16), offset (32)> 
– Divided into two partitions 

• First partition of up to 8 K segments are private to process (kept in local  
descriptor table LDT) 

• Second partition of up to 8K segments shared among all processes (kept in 
global descriptor table GDT) 

 
• CPU generates logical address (six Segment Reg.) 

– Given to segmentation unit 
• Which produces linear addresses 

– Physical address 32 bits 

– Linear address given to paging unit 
• Which generates physical address in main memory 
• Paging units form equivalent of MMU 
• Pages sizes can be 4 KB 

Intel 80386 

IBM OS/2 

S(13) G(1) P(2) 



Logical to Physical Address  
Translation in Pentium 

Page table=220  

entries 



Example: The Intel Pentium 

8 bytes Segment register 



Intel Pentium Segmentation 



Pentium Paging Architecture 



Virtual Memory 



Background 

• Code needs to be in memory to execute, but  
entire program rarely used 

– Error code, unusual routines, large data structures 

• Entire program code not needed at same time 

• Consider ability to execute partially-loaded  
program 

– Program no longer constrained by limits of physical  
memory 

– programs could be larger than physical memory 

– More processes can be accommodated 



Virtual Memory That is  
Larger Than Physical Memory 

Large virtual 
space 

Small memory 



Classical paging 

• Process P1 arrives 

• Requires n pages => n frames must be  
available 

• Allocate n frames to the process P1 

• Create page table for P1 

 
Allocate < n frames 



Background 
• Virtual memory – separation of user logical memory from  

physical memory 
– Extremely large logical space is available to programmer 
– Concentrate on the problem 

• Only part of the program needs to be in memory for  
execution 
– Logical address space can therefore be much larger than physical  

address space 
– Starts with address 0, allocates contiguous logical memory 
– Physical memory 

• Collection of frame 

 
 

• Virtual memory can be implemented via: 
– Demand paging 
– Demand segmentation 



Demand Paging 
• Bring a page into memory only when it is needed 

 
• Lazy swapper – never swaps a page into memory  

unless page will be needed 
– Swapper that deals with pages is a pager 

 

• Less I/O needed, no unnecessary I/O 
– Less memory needed 
– More users 

• Page is needed  reference to it 
– invalid reference  abort 
– not-in-memory  bring to memory 

Valid address  
information is available  
in PCB 



Transfer of a Paged Memory to  
Contiguous Disk Space 

• When we want to  
execute a process, swap  
in 

 
• Instead of swap in entire  

process, load page 
 
• Pager 



Page Table When Some Pages  
Are Not in Main Memory 

Pager loads few necessary pages in  
memory 



Valid-Invalid Bit 

• During address translation, if valid–invalid bit in page table entry 

is i  page fault 

i 

ii 

…. 

• With each page table entry a valid–invalid bit is associated  
(v  in-memory – memory resident, i  not-in-memory) 

• Initially valid–invalid bit is set to i on all entries 

• Example of a page table snapshot: 

Frame # valid-invalid bit 

v  

v  

v 

v 

page table 

Disk 
address 



Page Fault 

• If the page in not in memory, first reference to that page will trap to  
operating system: 

page fault 

 
1. Operating system looks at PCB to decide: 

– Invalid reference  abort 

– Just not in memory (load the page) 

2. Get empty frame 

3. Swap page into frame via scheduled disk operation 

4. Reset page table to indicate page now in memory  
Set validation bit = v 

5. Restart the instruction that caused the page fault 



What Happens if There is no Free Frame? 

• Example 
– 40 frames in memory 
– 8 processes each needs 10 pages 
– 5 of them never used 

• Two options 
– Run 4 processes (10 pages) 
– Run 8 processes (5 pages) 

• Increase the degree of multiprogramming 
– Over allocating memory 

 

• Page fault 
– No free frame 
– Terminate? swap out? replace the page? 

 

• Page replacement – find some page in memory, not really in use, page it out 

– Performance – want an algorithm which will result in minimum number of page faults 
 

• Same page may be brought into memory several times 



Steps in Handling a Page Fault 
Check  
PCB 



Pure Demand Paging 

• Extreme case – start process with no pages in memory 
– OS sets instruction pointer to first instruction of process, non-  

memory-resident -> page fault 

– Swap in that page 

– Pure demand paging 

• Actually, a given instruction could access multiple pages  
(instruction + data) -> multiple page faults 
– Pain decreased because of locality of reference 

• Hardware support needed for demand paging 
– Page table with valid / invalid bit 

– Secondary memory (swap device with swap space) 

– Instruction restart after page fault 



Steps in the ISR 

• In Demand Paging 
1. Trap to the operating system 

2. Save the user registers and process state 

3. Determine that the interrupt was a page fault 

4. Check that the page reference was legal and determine the location of the page on the disk 

5. Get a free frame 

6. Issue a read from the disk to a free frame: 

1. Wait in a queue for this device until the read request is serviced 

2. Wait for the device seek and/or latency time 

3. Begin the transfer of the page to a free frame 

7. While waiting, allocate the CPU to some other user 

8. Receive an interrupt from the disk I/O subsystem (I/O completed) 

9. Save the registers and process state of the running process 

10. Determine that the interrupt was from the disk 

11. Correct the page table and other tables to show page is now in memory 

12. Wait for the CPU to be allocated to this process again 

13. Restore the user registers, process state, and new page table, and then resume the interrupted  
instruction 



Performance of Demand Paging 
Demand paging affects the performance of the computer systems 

• Page Fault Rate 0  p  1 
– if p = 0 no page faults 
– if p = 1, every reference is a fault 

• Effective Access Time (EAT) 
EAT = (1 – p) x memory access 

+ p (page fault overhead 
+ swap page out 
+ swap page in 
+ restart overhead 

) 



Demand Paging Example 

• Memory access time = 200 nanoseconds 
• Average page-fault service time = 8 milliseconds 

• EAT = (1 – p) x 200 + p (8 milliseconds) 
= (1 – p ) x 200 + p x 8,000,000 
= 200 + p x 7,999,800 

• If one access out of 1,000 causes a page fault, then  
EAT = 8.2 microseconds. 
This is a slowdown by a factor of 40!! 

• If want performance degradation < 10 percent 
– 220 > 200 + 7,999,800 x p 

20 > 7,999,800 x p 
– p < .0000025 
– < one page fault in every 400,000 memory accesses 

 

Better utilization of swap space 

Swap space 



Allocation of Frames 

• How do we allocate the fixed amount of  
memory among various processes? 

 
• Single user system 

– Trivial 



Allocation of Frames 

• Each process needs minimum number of frames 

• Minimum number is defined by the instruction set 

• Page fault forces to restart the instruction 
– Enough frames to hold all the pages for that instruction 

• Example: 
– Single address instruction (2 frames) 

– Two address instruction (3 frames) 

• Maximum of course is total frames in the system 

• Two major allocation schemes 
– fixed allocation 

– proportional allocation 



Fixed and proportional Allocation 

• Equal allocation – m frames and n processes 

– Each process gets m/n 

• For example, if there are 100 frames (after allocating frames  
for the OS) and 5 processes, give each process 20 frames 

– Keep some as free frame buffer pool 

• Unfair for small and large sized processes 

• Proportional allocation – Allocate according to the size of  
process 

– Dynamic as degree of multiprogramming, process sizes 
change 

si  size of process pi 

S   si 

m  total number  of frames 

S 

s i 
i i a  allocation for p   m 

m  64 

s1  10 

s2   127 

1 
137 

a 
 10 

 64  5 

2 
137 

a  
127 

 64  59 



Priority Allocation 

Allocation of frames 

• Depends on multiprogramming level 

• Use a proportional allocation scheme using  
priorities along with size 



Need For Page Replacement 
P1 

P2 

K 



Need For Page Replacement 
P1 

P2 
 

PC 

K 



Basic Page Replacement 

1. Find the location of the desired page on disk 
 

2. Find a free frame: 
- If there is a free frame, use it 

- If there is no free frame, use a page replacement algorithm to  
select a victim frame (of that process) 

- Write victim frame to disk 
 
3. Bring the desired page into the (newly) free frame; update the page  

and frame tables 
 

4. Continue the process by restarting the instruction that caused the trap 

 
Note now potentially 2 page transfers for page fault – increasing Effective  

memory access time 



Page Replacement 

5 

6 5 

6 



Page Replacement 

5 

6 

6 

5 



cs431-cotter 118 

Belady's Anomaly 

#
 o

f 
P

ag
e 

F
au

lt
s 

Number of Frames 



Belady’s Anomaly 

• This most unexpected result is known as  
Belady’s anomaly – for some page-  
replacement algorithms, the page fault rate  
may increase as the number of allocated  
frames increases 

 
• Is there a characterization of algorithms  

susceptible to Belady’s anomaly? 



Global vs. Local Allocation 

• Frames are allocated to various processes 
 
• If process Pi generates a page fault 

– select for replacement one of its frames 
– select for replacement a frame from another process 

 
• Local replacement – each process selects from only its own set of  

allocated frames 
– More consistent per-process performance 
– But possibly underutilized memory 

 
• Global replacement – process selects a replacement frame from the  

set of all frames; one process can take a frame from another 
– But then process execution time can vary greatly 
– But greater throughput ----- so more common 

• Processes can not control its own page fault rate 
– Depends on the paging behavior of other processes 



Thrashing 

• If a process uses a set of “active pages” 

– Number of allocated frames is less than that 

• Page-fault 

– Replace some “active” page 

– But quickly need replaced “active” frame back 

– Quickly a page fault, again and again 

– Thrashing  a process is busy swapping pages in and out 

• OS monitors CPU utilization 

– If low? Increase the degree of multiprogramming 



• Global page replacement 

– Process enters new phase (subroutine call) execution 

– Page fault 

– Taking frames from other processes 
• Replace “active” frames of other processes 

– These processes start page fault 

– These faulting processes wait on the device queue for disk 
• Ready queue empty 

– CPU utilization decreases 

• CPU scheduler increases the degree of multiprogramming 

– More page faults 

– Drop in CPU utilization 

• Page fault increases tremendously 

Disk 

Thrashing 
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