
“MEMORY MANAGEMENT”

Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

Computer Dept.

05 NOV 2022

.

CLASS : TE COMPUTER 2019

SUBJECT : SPOS (SEM-I)

UNIT : VI

Memory Management

Source: cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx

http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx
http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx
http://cse.iitkgp.ac.in/~bivasm/os_notes/memory_v3.pptx

SYLLABUS :

Introduction: Memory Management concepts, Memory Management

requirements.

Memory Partitioning: Fixed Partitioning, Dynamic Partitioning, Buddy

Systems Fragmentation, Paging, Segmentation, Address translation.

Placement Strategies: First Fit, Best Fit, Next Fit and Worst Fit.

Virtual Memory (VM): Concepts, Swapping, VM with Paging, Page

Table Structure, Inverted Page Table, Translation Look aside Buffer,

Page Size, VM with Segmentation, VM with Combined paging and

segmentation.

Page Replacement Policies: First In First Out (FIFO), Last Recently

Used(LRU), Optimal, Thrashing.

Content

• Memory management:
• Review of Programming Model of Intel 80386,
• Contiguous and non-contiguous,
• Swapping,
• Paging,
• Segmentation,
• Segmentation with Paging.
• Virtual Memory:

– Background,
– Demand paging,
– Page replacement scheme-

• FIFO,
• LRU,
• Optimal,
• Thrashing.

• Case Study: Memory Management in multi-cores OS.

PAGE

REPLACEMENT

ALGORITHM

Prof. Gharu Anand N. 5

6

PAGE REPLACENT ALGORITHMS

1. FIFO Page Replacement Algorithm

2. LIFO Page Replacement Algorithm

3. LRU Page Replacement Algorithm

4. Optimal Page Replacement Algorithm

5. Random Page Replacement Algorithm

7

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO Page Replacement Algorithm-

• As the name suggests, this algorithm works on the principle of “First in

First out“.

• It replaces the oldest page that has been present in the main memory for

the longest time.

• It is implemented by keeping track of all the pages in a queue.

2. LRU Page Replacement Algorithm –

As the name suggests, this algorithm works on the principle of “Last in

First out“.

It replaces the newest page that arrived at last in the main memory.

It is implemented by keeping track of all the pages in a stack.

8

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

3. Optimal Page Replacement Algorithm-

• This algorithm replaces the page that will not be referred by the CPU

in future for the longest time.

• It is practically impossible to implement this algorithm.

• This is because the pages that will not be used in future for the longest

time can not be predicted.

• However, it is the best known algorithm and gives the least number of

page faults.

• Hence, it is used as a performance measure criterion for other

algorithms.

9

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

1. First In First Out (FIFO): This is the simplest page replacement

algorithm. In this algorithm, the operating system keeps track of all

pages in the memory in a queue, the oldest page is in the front of the

queue. When a page needs to be replaced page in the front of the queue

is selected for removal.

10

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

Advantages

Simple and easy to implement.

Low overhead.

Disadvantages

Poor performance.

Doesn’t consider the frequency of use or last used time, simply replaces

the oldest page.

Suffers from Belady’s Anomaly(i.e. more page faults when we increase

the number of page frames).

11

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

Example 1: Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3

page frames.Find the number of page faults.

12

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

For Example:

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2,

3 with frame size 4(i.e. maximum 4 pages in a frame).

Total Page Fault = 9

13

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

Example: Consider the Pages referenced by the CPU in the order are 6,

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1

 Number of Page Faults = 9

14

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

1. FIFO :

Example: Consider the Pages referenced by the CPU in the order are 6,

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1

15

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

2. LRU :

2. Least Recently Used: In this algorithm, page will be replaced

which is least recently used.

Advantages

1. Efficient.

2. Doesn't suffer from Belady’s Anomaly.

Disadvantages

1. Complex Implementation.

2. Expensive.

3. Requires hardware support.

16

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

2. LRU :

2. Least Recently Used: In this algorithm, page will be replaced

which is least recently used.

Example-3: Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3,

0, 3, 2, 3 with 4 page frames. Find number of page faults.

17

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

2. LRU :

Example: Consider the Pages referenced by the CPU in the order are 6,

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1, 7, 9, 6

The number of Page Faults = 12

18

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

2. LRU :

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2,

3 with frame size 4(i.e. maximum 4 pages in a frame).

Total Page Fault = 8

19

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

3. OPT :

3. Optimal Page replacement: In this algorithm, pages are replaced

which would not be used for the longest duration of time in the future.

Advantages

1. Easy to Implement.

2. Simple data structures are used.

3. Highly efficient.

Disadvantages

1. Requires future knowledge of the program.

2. Time-consuming.

20

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

3. OPT :

3. Optimal Page replacement: In this algorithm, pages are replaced

which would not be used for the longest duration of time in the future.

Example-2: Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,

3, 2, 3 with 4 page frame. Find number of page fault.

21

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

3. OPT :

Example: Consider the Pages referenced by the CPU in the order are 6,

7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1, 7, 9, 6

The number of Page Faults = 8

22

PAGE REPLACENT ALGORITHMS

Prof. Gharu Anand N.

3. OPT :

Consider the page reference string of size 12: 1, 2, 3, 4, 5, 1, 3, 1, 6, 3, 2,

3 with frame size 4(i.e. maximum 4 pages in a frame).

Total Page Fault = 6

23

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

Processes need execution time/storage space in memory blocks. OS has

various algorithms to allocate in-coming processes to available memory

blocks.

The following are the most used algorithms –

1. First Fit

2. Best Fit

3. Worst Fit

24

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

1. First fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that –

Block is available

Can fit the process

In simple words First Fit algorithm finds, the first block to fix the

process.

In the given example, let us assume the jobs and the memory

requirements as the following:

25

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

1. First fit :

26

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

2. Best fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that –

1. Block can accommodate process

2. Memory wastage is minimum

https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/

https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/
https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/

27

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

2. Best fit :

28

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

3. Worst fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that –

1. Block can accommodate process

2. Memory wastage is maximum

29

First, Best and Worst Fit algorithms

Prof. Gharu Anand N.

3. Worst fit :

• We have seen how CPU can be shared by a set
of processes

– Improve system performance

– Process management

• Need to keep several process in memory

– Share memory

• Learn various techniques to manage memory

– Hardware dependent

Memory management

Memory management

What are we going to learn?

• Basic Memory Management: logical vs.
physical address space, protection, contiguous
memory allocation, paging, segmentation,
segmentation with paging.

• Virtual Memory: background, demand paging,

performance, page replacement, page
replacement algorithms (FCFS, LRU), allocation
of frames, thrashing.

Review of Programming Model of
80386

Background

• Program must be brought (from disk) into
memory

• Fetch-decode-execute cycle

• Memory unit only sees a stream of
addresses + read requests, or address + data
and write requests

• Sequence of memory addresses generated
by running program

CPU

Logical vs. Physical Address Space

Logical address – generated by the CPU; also
referred to as virtual address

Physical address – address seen by the memory
unit

• Logical address space is the set of all logical
addresses generated by a program

• Physical address space is the set of all
physical addresses generated by a program

CPU

• Protection of memory required to ensure
correct operation

Background
Multiple processes resides in memory

1. Protect OS
2. Protect user processes

Base and Limit Registers

• A pair of base and limit registers define
the logical address space

Hardware Address Protection with Base and Limit Registers

• OS loads the base & limit reg.
• Privileged instruction

Address Binding

• Process resides in main memory

• Associate each data element with memory address

• Further, addresses represented in different ways at
different stages of a program’s life

– Source code addresses usually symbolic

– Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”

– Linker or loader will bind relocatable addresses to absolute
addresses

• i.e. 74014

Multistep Processing of a User
Program

Binding of Instructions and Data to
Memory

• Address binding of instructions and data to memory
addresses can happen at three different stages
– Compile time: If memory location known a priori,

absolute code can be generated; must recompile code if
starting location changes

– Load time: Must generate relocatable code if memory
location is not known at compile time

– Execution time: If the process can be moved during its
execution from one memory segment to another
• Binding delayed until run time

• Need hardware support for address maps (e.g., base and limit
registers)

Logical vs. Physical Address Space

Logical address – generated by the CPU; also referred to
as virtual address

Physical address – address seen by the memory unit

• Logical and physical addresses are the same in

compile-time and load-time address-binding
schemes;

• logical (virtual) and physical addresses differ in
execution-time address-binding scheme

• Logical address space is the set of all logical
addresses generated by a program

• Physical address space is the set of all physical
addresses generated by a program

CPU

Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to physical address

• Many methods possible

• To start, consider simple scheme where the value in the

relocation register is added to every address generated by a user
process at the time it is sent to memory
– relocation register
– MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses (0 to max); it

never sees the real physical addresses (R to R+max)
– Say the logical address 25
– Execution-time binding occurs when reference is made to location

in memory
– Logical address bound to physical addresses

Dynamic relocation using a
relocation register

Relocatable
code

14000

Multiple processes resides in memory

Contiguous Allocation

Contiguous Allocation

• Main memory usually divided into two
partitions:

– Resident operating system, usually held in low
memory

– User processes then held in high memory

– Each process contained in single contiguous
section of memory

Contiguous Allocation (Cont.)

• Multiple-partition allocation
– Divide memory into several Fixed size partition

– Each partition stores one process

– Degree of multiprogramming limited by number of
partitions

– If a partition is free, load process from job queue

– MFT (IBM OS/360)

Contiguous Allocation (Cont.)
• Multiple-partition allocation

– Variable partition scheme
– Hole – block of available memory; holes of various size are

scattered throughout memory
– Keeps a table of free memory
– When a process arrives, it is allocated memory from a hole large

enough to accommodate it
– Process exiting frees its partition, adjacent free partitions

combined
– Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2

OS

Hole

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

Dynamic storage allocation problem

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size
– Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search entire list
– Produces the largest leftover hole

Hardware Support for Relocation
and Limit Registers

• Relocation registers used to protect user processes from each other, and from changing
operating-system code and data
• Relocation register contains value of smallest physical address
• Limit register contains range of logical addresses – each logical address must be less

than the limit register
• Context switch
• MMU maps logical address dynamically

Fragmentation

• Processes loaded and removed from memory
– Memory is broken into little pieces

• External Fragmentation – total memory space

exists to satisfy a request, but it is not contiguous

• First fit analysis reveals that given N blocks

allocated, 0.5 N blocks lost to fragmentation
– 1/3 may be unusable -> 50-percent rule

Fragmentation (Cont.)

• Reduce external fragmentation by compaction
– Shuffle memory contents to place all free memory

together in one large block

– Compaction is possible only if relocation is dynamic,
and is done at execution time
• Change relocation reg.

– Cost

• Internal Fragmentation – allocated memory may

be slightly larger than requested memory; this size
difference is memory internal to a partition, but
not being used

Paging

• Physical address space of a process can be noncontiguous;
– process allocates physical memory whenever the latter is available

• Divide physical memory into fixed-sized blocks called frames
– Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

– To run a program of size N pages, need to find N free frames and load
program

• Backing store likewise split into pages

• Set up a page table to translate logical to physical addresses

• System keeps track of all free frames

Paging Model of Logical and Physical Memory

page table to translate logical to physical
addresses

Address Translation Scheme

• Address generated by CPU is divided into:
– Page number (p) – used as an index into a page table

• which contains base address of each page in physical memory

– Page offset (d) – offset within a page
• combined with base address to define the physical memory address that

is sent to the memory unit

age number page offset

p d

p

m - n n

– For given logical address space 2m and page size 2n

offset
page

Paging Hardware

Paging Example

n=2 and m=4 32-byte

memory and 4-byte pages

Logical address = 16
Page size=4
Physical memory=32

User’s view

Logical address 0
(0*4+0)
Physical address:
(5*4+0)=20

Logical address 3
(0*4+3)
Physical address:
(5*4+0)=23

Logical address 4
(1*4+0)
Physical address:
(6*4+0)=24

Logical address 13
(3*4+1)
Physical address:
(2*4+1)

Run time address binding

Paging

• External fragmentation??
• Calculating internal fragmentation

– Page size = 2,048 bytes
– Process size = 72,766 bytes
– 35 pages + 1,086 bytes
– Internal fragmentation of 2,048 - 1,086 = 962 bytes

• So small frame sizes desirable?
– But increases the page table size
– Poor disk I/O
– Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• User’s view and physical memory now very different
– user view=> process contains in single contiguous memory space

• By implementation process can only access its own memory
– protection

• Each page table entry 4 bytes (32 bits) long

• Each entry can point to 232 page frames

• If each frame is 4 KB

• The system can address 244 bytes (16TB) of
physical memory

Virtual address space 16MB.
Page table size?

• Process P1 arrives

• Requires n pages => n frames must be
available

• Allocate n frames to the process P1

• Create page table for P1

Free Frames

After allocation

RAM

Before allocation

Frame table

RAM

Use’s view
System’s view

Implementation of Page Table
• For each process, Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the
page table

• In this scheme every data/instruction access requires two
memory accesses
– One for the page table and one for the data / instruction

• The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)

Associative memory

Associative Memory
• Associative memory – parallel search

• Address translation (p, d)
– If p is in associative register, get frame # out
– Otherwise get frame # from page table in memory

Page # Frame #

Implementation of Page Table
• For each process, Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory accesses
– One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative memory or translation look-aside buffers (TLBs)

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time

– Replacement policies must be considered (LRU)
– Some entries can be wired down for permanent fast access

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely
identifies each process (PID) to provide address-space protection for that process
– Otherwise need to flush at every context switch

Paging Hardware With TLB

Effective Access Time
• Associative Lookup =  time unit

– Can be < 10% of memory access time

• Hit ratio = 
– Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to size of TLB

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access

• Effective Access Time (EAT)
EAT = (100 + )  + (200 + )(1 – )

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
– EAT = 0.80 x 120 + 0.20 x 220 = 140ns

• Consider better hit ratio ->  = 98%,  = 20ns for TLB search, 100ns for
memory access
– EAT = 0.98 x 120 + 0.02 x 220 = 122ns

Memory Protection
• Memory protection implemented by associating protection bit

with each frame to indicate if read-only or read-write access is
allowed
– Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
– “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page
– “invalid” indicates that the page is not in the process’ logical

address space
– Or use PTLR

• Any violations result in a trap to the kernel

Valid (v) or Invalid (i)
Bit In A Page Table

14 bit address space (0 to 16383)
Page size 2KB

Process P1 uses only 0 to 10468

Internal fragmentation Use of PTLR (length)

Page 0

Page 1

Page 2

Page 3

P1

P2

• System with 40 users

– Use common text editor

• Text editor contains 150KB code 50KB data (page size 50KB)

– 8000KB!

• Shared code

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)
• Code never changes during execution

• Only one copy of the editor in the memory

• Total memory consumption
– 40*50+150=2150KB

Shared Pages Example

Shared Pages Example

Data share: example

int main()
{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);
printf("shmid=%d ptr=%u\n",shmid, ptr);
strcpy(ptr,"hello");

i=shmdt((char*)ptr);

}

int main()
{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);
printf("shmid=%d ptr=%u\n",shmid, ptr);
printf("\nstr %s\n",ptr);

}

writer.c
reader .c

ptr
Shared
memory

Structure of the Page Table
• Memory requirement for page table can get huge using straight-

forward methods
– Consider a 32-bit logical address space as on modern computers
– Page size of 4 KB (212)
– Page table would have 1 million entries 220 (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address space / memory for

page table alone
• That amount of memory used to cost a lot
• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

Hierarchical Page Tables

• Break up the page table into multiple
pages

• We then page the page table

• A simple technique is a two-level page

table

Two-Level Page-Table Scheme

Two-Level Paging Example

displacement within the page of the inner page table

age number page offset

p1 p2 d

• A logical address (on 32-bit machine with 4KB page size) is
divided into:
– a page number consisting of 20 bits
– a page offset consisting of 12 bits

• Since the page table is paged, the page number is further
divided into:
– a 10-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

p

10 10 12

• where p1 is an index into the outer page table, and p2 is the

Two-Level Page-Table Scheme

p1

p2

d

Each divided page table
size=210 *4bytes=4KB
=Page size

Pentium II

Address-Translation Scheme

Pentium II

64-bit Logical Address Space
• Even two-level paging scheme not sufficient
• If page size is 4 KB (212)

– Then page table has 252 entries
– If two level scheme, inner page tables could be 210 4-byte entries
– Address would look like

42 10 12

– Outer page table has 242 entries or 244 bytes
– One solution is to add a 2nd outer page table
– But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical memory location

outer page

p1 p2 d

inner page
page offset

Three-level Paging Scheme

SPARC (32 bits), Motorola 68030 support three and four level paging respectively

Hashed Page Tables

• Common in virtual address spaces > 32 bits

• The page number is hashed into a page table

– This page table contains a chain of elements hashing to the same
location

• Each element contains (1) the page number (2) the value of the

mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a

match
– If a match is found, the corresponding physical frame is extracted

Hashed Page Table

Inverted Page Table

• Rather than each process having a page table and
keeping track of all possible logical pages, track all frames

• One entry for each frame

• Entry consists the page number stored in that frame, with

information about the process that owns that page

• Decreases memory needed to store each page table,

– but increases time needed to search the table when a page
reference occurs

Inverted Page Table Architecture
64 bit UltraSPARC, PowerPC,

Address space ID

Segmentation

main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays

• Memory-management scheme that supports user view of
memory

• A program is a collection of segments
– A segment is a logical unit such as:

Compiler generates the
segments
Loader assign the seg#

User’s View of a Program

User specifies each address
by two quantities
(a) Segment name
(b) Segment offset

Logical address contains the
tuple
<segment#, offset>

• Variable size segments without order
• Length=> purpose of the program
• Elements are identified by offset

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

• Long term scheduler finds and allocates memory for all segments of a program
• Variable size partition scheme

Logical
address
space

Logical address <segment-number, offset>

Memory image

Executable file and virtual address

Virtual address
space

a.out

Symbol table

Name address

SQR 0

SUM 4

0
4

Load
ADD

0
4

<CODE, 0>
<CODE, 2>

Load
ADD

<ST,0>
<ST,4>

Paging view

Segmentation view

Segmentation Architecture

• Logical address consists of a two tuple:
<segment-number, offset>

• Segment table – maps two-dimensional logical address
to physical address;

• Each table entry has:
– base – contains the starting physical address where the

segments reside in memory
– limit – specifies the length of the segment

• Segment-table base register (STBR) points to the
segment table’s location in memory

• Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR

Example of Segmentation

Segmentation Hardware

Example of Segmentation

Segmentation Architecture

• Protection

• Protection bits associated with segments
– With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Code sharing occurs at segment level

• Since segments vary in length, memory allocation is
a dynamic storage-allocation problem
– Long term scheduler

– First fit, best fit etc

• Fragmentation

Segmentation with Paging

Key idea:

Segments are splitted into multiple pages

Each page is loaded into frames in the memory

Segmentation with Paging

• Supports segmentation with paging
– Each segment can be 4 GB
– Up to 16 K segments per process
– <selector(16), offset (32)>
– Divided into two partitions

• First partition of up to 8 K segments are private to process (kept in local
descriptor table LDT)

• Second partition of up to 8K segments shared among all processes (kept in
global descriptor table GDT)

• CPU generates logical address (six Segment Reg.)

– Given to segmentation unit
• Which produces linear addresses

– Physical address 32 bits

– Linear address given to paging unit
• Which generates physical address in main memory
• Paging units form equivalent of MMU
• Pages sizes can be 4 KB

Intel 80386

IBM OS/2

S(13) G(1) P(2)

Logical to Physical Address
Translation in Pentium

Page table=220

entries

Example: The Intel Pentium

8 bytes Segment register

Intel Pentium Segmentation

Pentium Paging Architecture

Virtual Memory

Background

• Code needs to be in memory to execute, but
entire program rarely used

– Error code, unusual routines, large data structures

• Entire program code not needed at same time

• Consider ability to execute partially-loaded
program

– Program no longer constrained by limits of physical
memory

– programs could be larger than physical memory

– More processes can be accommodated

Virtual Memory That is
Larger Than Physical Memory

Large virtual
space

Small memory

Classical paging

• Process P1 arrives

• Requires n pages => n frames must be
available

• Allocate n frames to the process P1

• Create page table for P1

Allocate < n frames

Background
• Virtual memory – separation of user logical memory from

physical memory
– Extremely large logical space is available to programmer
– Concentrate on the problem

• Only part of the program needs to be in memory for
execution
– Logical address space can therefore be much larger than physical

address space
– Starts with address 0, allocates contiguous logical memory
– Physical memory

• Collection of frame

• Virtual memory can be implemented via:
– Demand paging
– Demand segmentation

Demand Paging
• Bring a page into memory only when it is needed

• Lazy swapper – never swaps a page into memory

unless page will be needed
– Swapper that deals with pages is a pager

• Less I/O needed, no unnecessary I/O
– Less memory needed
– More users

• Page is needed  reference to it
– invalid reference  abort
– not-in-memory  bring to memory

Valid address
information is available
in PCB

Transfer of a Paged Memory to
Contiguous Disk Space

• When we want to
execute a process, swap
in

• Instead of swap in entire

process, load page

• Pager

Page Table When Some Pages
Are Not in Main Memory

Pager loads few necessary pages in
memory

Valid-Invalid Bit

• During address translation, if valid–invalid bit in page table entry

is i  page fault

i

ii

….

• With each page table entry a valid–invalid bit is associated
(v  in-memory – memory resident, i  not-in-memory)

• Initially valid–invalid bit is set to i on all entries

• Example of a page table snapshot:

Frame # valid-invalid bit

v

v

v

v

page table

Disk
address

Page Fault

• If the page in not in memory, first reference to that page will trap to
operating system:

page fault

1. Operating system looks at PCB to decide:

– Invalid reference  abort

– Just not in memory (load the page)

2. Get empty frame

3. Swap page into frame via scheduled disk operation

4. Reset page table to indicate page now in memory
Set validation bit = v

5. Restart the instruction that caused the page fault

What Happens if There is no Free Frame?

• Example
– 40 frames in memory
– 8 processes each needs 10 pages
– 5 of them never used

• Two options
– Run 4 processes (10 pages)
– Run 8 processes (5 pages)

• Increase the degree of multiprogramming
– Over allocating memory

• Page fault
– No free frame
– Terminate? swap out? replace the page?

• Page replacement – find some page in memory, not really in use, page it out

– Performance – want an algorithm which will result in minimum number of page faults

• Same page may be brought into memory several times

Steps in Handling a Page Fault
Check
PCB

Pure Demand Paging

• Extreme case – start process with no pages in memory
– OS sets instruction pointer to first instruction of process, non-

memory-resident -> page fault

– Swap in that page

– Pure demand paging

• Actually, a given instruction could access multiple pages
(instruction + data) -> multiple page faults
– Pain decreased because of locality of reference

• Hardware support needed for demand paging
– Page table with valid / invalid bit

– Secondary memory (swap device with swap space)

– Instruction restart after page fault

Steps in the ISR

• In Demand Paging
1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of the page on the disk

5. Get a free frame

6. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame

7. While waiting, allocate the CPU to some other user

8. Receive an interrupt from the disk I/O subsystem (I/O completed)

9. Save the registers and process state of the running process

10. Determine that the interrupt was from the disk

11. Correct the page table and other tables to show page is now in memory

12. Wait for the CPU to be allocated to this process again

13. Restore the user registers, process state, and new page table, and then resume the interrupted
instruction

Performance of Demand Paging
Demand paging affects the performance of the computer systems

• Page Fault Rate 0  p  1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

Demand Paging Example

• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds

• EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p) x 200 + p x 8,000,000
= 200 + p x 7,999,800

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

• If want performance degradation < 10 percent
– 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p
– p < .0000025
– < one page fault in every 400,000 memory accesses

Better utilization of swap space

Swap space

Allocation of Frames

• How do we allocate the fixed amount of
memory among various processes?

• Single user system

– Trivial

Allocation of Frames

• Each process needs minimum number of frames

• Minimum number is defined by the instruction set

• Page fault forces to restart the instruction
– Enough frames to hold all the pages for that instruction

• Example:
– Single address instruction (2 frames)

– Two address instruction (3 frames)

• Maximum of course is total frames in the system

• Two major allocation schemes
– fixed allocation

– proportional allocation

Fixed and proportional Allocation

• Equal allocation – m frames and n processes

– Each process gets m/n

• For example, if there are 100 frames (after allocating frames
for the OS) and 5 processes, give each process 20 frames

– Keep some as free frame buffer pool

• Unfair for small and large sized processes

• Proportional allocation – Allocate according to the size of
process

– Dynamic as degree of multiprogramming, process sizes
change

si  size of process pi

S   si

m  total number of frames

S

s i
i i a  allocation for p   m

m  64

s1  10

s2  127

1
137

a 
 10

 64  5

2
137

a 
127

 64  59

Priority Allocation

Allocation of frames

• Depends on multiprogramming level

• Use a proportional allocation scheme using
priorities along with size

Need For Page Replacement
P1

P2

K

Need For Page Replacement
P1

P2

PC

K

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to
select a victim frame (of that process)

- Write victim frame to disk

3. Bring the desired page into the (newly) free frame; update the page

and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault – increasing Effective

memory access time

Page Replacement

5

6 5

6

Page Replacement

5

6

6

5

cs431-cotter 118

Belady's Anomaly

#
 o

f
P

ag
e

F
au

lt
s

Number of Frames

Belady’s Anomaly

• This most unexpected result is known as
Belady’s anomaly – for some page-
replacement algorithms, the page fault rate
may increase as the number of allocated
frames increases

• Is there a characterization of algorithms

susceptible to Belady’s anomaly?

Global vs. Local Allocation

• Frames are allocated to various processes

• If process Pi generates a page fault

– select for replacement one of its frames
– select for replacement a frame from another process

• Local replacement – each process selects from only its own set of

allocated frames
– More consistent per-process performance
– But possibly underutilized memory

• Global replacement – process selects a replacement frame from the

set of all frames; one process can take a frame from another
– But then process execution time can vary greatly
– But greater throughput ----- so more common

• Processes can not control its own page fault rate
– Depends on the paging behavior of other processes

Thrashing

• If a process uses a set of “active pages”

– Number of allocated frames is less than that

• Page-fault

– Replace some “active” page

– But quickly need replaced “active” frame back

– Quickly a page fault, again and again

– Thrashing  a process is busy swapping pages in and out

• OS monitors CPU utilization

– If low? Increase the degree of multiprogramming

• Global page replacement

– Process enters new phase (subroutine call) execution

– Page fault

– Taking frames from other processes
• Replace “active” frames of other processes

– These processes start page fault

– These faulting processes wait on the device queue for disk
• Ready queue empty

– CPU utilization decreases

• CPU scheduler increases the degree of multiprogramming

– More page faults

– Drop in CPU utilization

• Page fault increases tremendously

Disk

Thrashing

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

