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Systems Fragmentation, Paging, Segmentation, Address translation.
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Virtual Memory (VM): Concepts, Swapping, VM with Paging, Page
Table Structure, Inverted Page Table, Translation Look aside Buffer,
Page Size, VM with Segmentation, VM with Combined paging and
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Page Replacement Policies: First In First Out (FIFO), Last Recently
Used(LRU), Optimal, Thrashing.



Content

Memory management:
Review of Programming Model of Intel 80386,
Contiguous and non-contiguous,
Swapping,
Paging,
Segmentation,
Segmentation with Paging.
Virtual Memory:

— Background,

— Demand paging,

— Page replacement scheme-
FIFO,
LRU,

Optimal,
Thrashing.

Case Study: Memory Management in multi-cores OS.
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PAGE REPLACENT ALGORITHMS

»FIFO Page Replacement Algorithm

>LIFO Page Replacement Algorithm

Page Replacement Algorithms »LRU Page Replacement Algorithm
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»Random Page Replacement Algorithm
FIFO Page Replacement Algorithm

LIFO Page Replacement Algorithm
3. LRU Page Replacement Algorithm
4. Optimal Page Replacement Algorithm

5. Random Page Replacement Algorithm



PAGE REPLACENT ALGORITHMS

1. FIFO Page Replacement Algorithm-
 As the name suggests, this algorithm works on the principle of “First In
First out®.

|t replaces the oldest page that has been present in the main memory for

the longest time.

[t is implemented by keeping track of all the pages in a queue.

2. LRU Page Replacement Algorithm —

As the name suggests, this algorithm works on the principle of “Last In
First out®.

It replaces the newest page that arrived at last in the main memory.

It is implémented by keeping track of all the pages in a stack. 7



PAGE REPLACENT ALGORITHMS

3. Optimal Page Replacement Algorithm-

This algorithm replaces the page that will not be referred by the CPU
In future for the longest time.

It is practically impossible to implement this algorithm.

This Is because the pages that will not be used In future for the longest
time can not be predicted.

However, it Is the best known algorithm and gives the least number of
page faults.

Hence, it 1s used as a performance measure criterion for other
algorithms.

Prof. Gharu Anand N. 8



PAGE REPLACENT ALGORITHMS
1. FIFO :

1. First In First Out (FIFO): This is the simplest page replacement
algorithm. In this algorithm, the operating system keeps track of all
pages in the memory in a queue, the oldest page is in the front of the
queue. When a page needs to be replaced page in the front of the queue

Is selected for removal.

Prof. Gharu Anand N. 9



PAGE REPLACENT ALGORITHMS
1. FIFO :

Advantages
Simple and easy to implement.

Low overhead.

Disadvantages

Poor performance.

Doesn’t consider the frequency of use or last used time, simply replaces
the oldest page.

Suffers from Belady’s Anomaly(i.e. more page faults when we increase

the number 6f pageframes). 10



PAGE REPLACENT ALGORITHMS
1. FIFO :

Example 1: Consider page reference string 1, 3, 0, 3, 5, 6, 3 with 3
page frames.Find the number of page faults.

Page 1.3.0.3. 5.6, 3
reference
1 = O = (& o =
O O O O 3
3 3 G 3 o o
1 1 1 1 D D D
Miss MNMiss Miss Hit MNMiss Miss Miss
Total Page Fault = 6
11
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PAGE REPLACENT ALGORITHMS
1. FIFO :

For Example:
Consider the page reference string of size 12: 1, 2, 3,4,5,1, 3,1, 6, 3, 2,
3 with frame size 4(i.e. maximum 4 pages in a frame).

1 2 3 4 5 1 3 1 6 3 2 3
1 1 1 1 5 5 5 5 5 5 2 2
2 2 2 2 1 1 1 1 | 1 1
3 3 3 3 3 3 6 6 6 6
4 4 4 4 4 4 3 3 3
M M M M M M H H M M M H
M = Miss

H = Hit



PAGE REPLACENT ALGORITHMS

1. FIFO :

Example: Consider the Pages referenced by the CPU in the order are 6,

7,8,9,6,7,1,6,7,8,9,1

Pages== 6 [ g 9 i 7 1 i 7 g 9 1
Frame 3 8 8 8 7 7 7 7 T g 0
Frame 2 7 7 7 i i 6 i 6 3 8 g
Frame 1 6 6 6 0 ! 0 1 1 1 1 1 1

Miss Miss Miss Miss Miss Miss Miss Hit Hit Miss Miss Hit

Number of Page Faults = 9

Prof. Gharu Anand N.

13




PAGE REPLACENT ALGORITHMS
1. FIFO :

Example: Consider the Pages referenced by the CPU in the order are 6,
7,8,9,6,7,1,6,7,8,9,1

Prof. Gharu Anand N. 14



PAGE REPLACENT ALGORITHMS
2. LRU :

2. Least Recently Used: In this algorithm, page will be replaced
which is least recently used.

Advantages
1. Efficient.
2. Doesn't suffer from Belady’s Anomaly.

Disadvantages
1. Complex Implementation.
2. EXpensive.
3. Requires hardware support.

Prof. Gharu Anand N. 15



PAGE REPLACENT ALGORITHMS
2. LRU :

2. Least Recently Used: In this algorithm, page will be replaced
which is least recently used.
Example-3: Consider the page reference string 7,0, 1, 2, 0, 3, 0, 4, 2, 3,

0, 3, 2, 3 with 4 page frames. Find number of page faults.
Page

reference 7,0,1,2,0,3,0,4,2,3,0,3,2,3 No. of Page frame - 4
7 0 1 2 0 3 0 4 2 3 0 3 2 3
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 4 4 4 4 4| | 4 4
0 0 0 0 0 0 0 0 0 0 0 0 0
7 7 7 7 7 3 3 3 3 3 3 3 3 3

Miss Miss Miss Miss  Hit Miss Hit Miss Hit Hit Hit Hit Hit  Hit

Total Page Fault =6
Prof. Gharu Anand N. 16

Here LRU has same number of paage fault as optimal but it mav differ accordino to question.



PAGE REPLACENT ALGORITHMS

2. LRU :

Example: Consider the Pages referenced by the CPU in the order are 6,

7,8,96,7,16,7,89,/1,7,96

Pagess= 6 1 § g b 1 i b | § g 1 | g b
Frame 3 § § § 1 | 1 | 1 | 1 1 1 i
Frame 2 1 | 1 i i i i i i { ! { ! {
Framed| 6 i i ! { ! 1 1 1 § § § | 1 |
Miss  Mis Mg Miss  Miss  Miss Miss  Hit Hit Miss ~ Miss  Miss  Miss Hi  Miss '

The number of Page Faults = 12

Prof. Gharu Anand N.
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PAGE REPLACENT ALGORITHMS
2. LRU :

Consider the page reference string of size 12: 1, 2, 3,4,5,1, 3,1, 6, 3, 2,
3 with frame size 4(i.e. maximum 4 pages in a frame).

1 2 3 4 5 1 3 1 6 3 2 3
1 1 1 1 5 5 5 5 5 5 2 2
2 2 2 2 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 6 6 6 6
M M M M M M H H M H M H
M = Miss
H = Hit

Total Page Fault =8
Prof. Gharu Anand N. 18




PAGE REPLACENT ALGORITHMS
3. OPT :

3. Optimal Page replacement: In this algorithm, pages are replaced
which would not be used for the longest duration of time in the future.

Advantages

1. Easy to Implement.

2. Simple data structures are used.
3. Highly efficient.

Disadvantages

1. Requires future knowledge of the program.
2. Time-consuming.

Prof. Gharu Anand N. 19



PAGE REPLACENT ALGORITHMS

3. OPT :

3. Optimal Page replacement: In this algorithm, pages are replaced
which would not be used for the longest duration of time in the future.

Example-2: Consider the page references 7,0, 1, 2,0, 3, 0, 4, 2, 3, 0,
3, 2, 3 with 4 page frame. Find number of page fault.

Page 7.0.1.2.03.04.2.3.0,32.3
reference
7 0 1 2 0 3 0
2 2 2 2
1 1 1 1 1
0 0 0 0 0 0
7 7 7 7 7 3 3
Miss Miss Miss Miss Hit Miss Hit
Prof. Gharu Anand N.

Total Page Fault =6

No. of Page frame - 4

4 2 3 0 3 2 3
2 2 2 2 2 2 2
4 - 4 4 4 | 4 -
0 0 0 0 0 0 0
3 3 3 3 3 3 3
Miss Hit Hit Hit Hit Hit  Hit
20




PAGE REPLACENT ALGORITHMS
3. OPT :

Example: Consider the Pages referenced by the CPU in the order are 6,
7,8,9,6,7,1,6,7,8,9,1,7,9,6

Pages=> G 1 8 9 B 1 1 b i § g 1 i 9 B

Frame 3 8 ! ! ! 1 1 1 1 1 1 1 1 1

Frame 2 1 i 1 i 1 i 1 i 1 i 1 i 1 i

Frame1| 6 i i i i i i i i § ! ! ! ! i

Miss  Mis  Miss  Miss Hi Hit Mis  Hi Hit Miss  Mis  Hi Hit Ht  Miss

The number of Page Faults = 8

Prof. Gharu Anand N. 21



PAGE REPLACENT ALGORITHMS
3. OPT :

Consider the page reference string of size 12: 1, 2, 3,4,5,1, 3,1, 6, 3, 2,
3 with frame size 4(i.e. maximum 4 pages in a frame).

1 2 3 4 5 1 3 1 6 3 2 3
1 1 1 1 1 1 1 1 6 6 6 6
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 X 3 3
4 5 5 5 5 5 5 5 5
M M M M M H H H M H H H
M = Miss
H = Hit

Total Page Fault =6

Prof. Gharu Anand N. 22



First, Best and Worst Fit algorithms

Processes need execution time/storage space in memory blocks. OS has
various algorithms to allocate in-coming processes to available memory
blocks.

The following are the most used algorithms —

1. First Fit
2. Best Fit
3. Worst Fit

Prof. Gharu Anand N. 23



First, Best and Worst Fit algorithms
1. First fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that —

Block is available
Can fit the process

In simple words First Fit algorithm finds, the first block to fix the

Process.

In the given example, let us assume the jobs and the memory

] Prof.Gharuﬁna dN. . 24
requirements as the following:



First, Best and Worst Fit algorithms
1. First fit :

First Fit Allocation in OS

Process Sizes

First FIT Allocation

Block 1 Block 2 Block 3 Block 4 Block 5

Memory Wastage

Size Allocatad to After Process Occupies

Process 1 Block2 100 - 90 =10

Process 2 Block 4 200 - 50 = 150 P4 remains
u 11 ted

Process 4 Unallocated -




First, Best and Worst Fit algorithms
2. Best fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that —

1. Block can accommodate process

2. Memory wastage Is minimum

https://prepinsta.com/operating-systems/first-fit-best-fit-worst-fit-in-os-example/

Prof. Gharu Anand N. 26
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First, Best and Worst Fit algorithms
2. Best fit :

Best Fit Allocation in OS

Process Size

Best FIT Allocation

Block 1 Block 2 Block 3 Block 4 Block 5

Size Can Occupy? Memory Wastage

Block 1 Yes

Block 2

Block 3 No

Block 4

Block S




First, Best and Worst Fit algorithms
3. Worst fit :

This method works as for any process Pn, the OS searches from starting

block again and again and allocates a block to process Pn such that —

1. Block can accommodate process

2. Memory wastage IS maximum

Prof. Gharu Anand N. 28



First, Best and Worst Fit algorithms
3. Worst fit :

Worst Fit Allocation in OS

Process Size

Worst FIT All

Block 1 Block 2 Block 3 Block 4 Block 5

size Can Occupy? Memory Wastage

Block 1
Block 2
Block 3

Block 4

Block 5
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&7 " Memory management

* We have seen how CPU can be shared by a set
of processes

— Improve system performance
— Process management

* Need to keep several process in memory

— Share memory

* Learn various techniques to manage memory

— Hardware dependent



Memory management

What are we going to learn?

* Basic Memory Management: logical vs.
physical address space, protection, contiguous
memory allocation, paging, segmentation,
segmentation with paging.

* Virtual Memory: background, demand paging,
performance, page replacement, page
replacement algorithms (FCFS, LRU), allocation
of frames, thrashing.



Review of Programming Model of
80386

ERX

ECX

FDX
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EP
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B e"x BL Rasa Incex
cH c:x a Court
OH B:X oL Data
b Stack Posnter
6P Base Porter
o Destimpton indes
§ Seurce Index
> Pistucton Poerter
FLAGS Flags

cs

DS

ES

S5

FS

GS

Cede

Data

Extra

Stack



Background

Program must be brought (from disk) into
memory

Fetch-decode-execute cycle - -m

Memory unit only sees a stream of
addresses + read requests, or address + data
and write requests

Sequence of memory addresses generated
by running program



Logical vs. Physical Address Space

Logical address — generated by the CPU; also
referred to as virtual address CPU

PITTTTITIITNT
-

Physical address — address seen by the memory
unit

* Logical address space is the set of all logical
addresses generated by a program

* Physical address space is the set of all
physical addresses generated by a program



Background

Multiple processes resides in memory

correct operation

0
256000

1. Protect OS

2. Protect user processes 300040
420940
880000

1024000

Protection of memory required to ensure

operating
system
process
300040
process base
120900
limit
process




Base and Limit Registers

* A pair of base and limit registers define
the logical address space

0

operating
system
256000
process
300040 ) 300040
process base
420940 s 120900
process limit
880000
1024000




Hardware Address Protection with Base and Limit Registers

CPU

OS loads the base & limit reg.

address

Privileged instruction

base

v

no

yes

base + limit

no

trap to operating system
monitor—addressing error

yes

memory




Address Binding

* Process resides in main memory
e Associate each data element with memory address

* Further, addresses represented in different ways at
different stages of a program’s life

— Source code addresses usually symbolic
— Compiled code addresses bind to relocatable addresses
* i.e. “14 bytes from beginning of this module”
— Linker or loader will bind relocatable addresses to absolute

addresses
e j.e. 74014



Multistep Processing of a User
Program

source
program

compiler or compile
assembler time
object
module
other
object
modules
linkage
editor
load | load
module time
system
library
loader
dynamicall J
loaded
system L 4 ~
library i
in-memory i
dynamic binary s tei)rf:l(J:IUOHn
linking memory time)
image
S5




Binding of Instructions and Data to
Memory

* Address binding of instructions and data to memory
addresses can happen at three different stages

— Compile time: If memory location known a priori,
absolute code can be generated; must recompile code if
starting location changes

— Load time: Must generate relocatable code if memory
location is not known at compile time

— Execution time: If the process can be moved during its
execution from one memory segment to another
* Binding delayed until run time

* Need hardware support for address maps (e.g., base and limit
registers)



Logical vs. Physical Address Space

Logical address — generated by the CPU; also referred to

as virtual address g
o 51

Physical address — address seen by the memory unit

Logical and physical addresses are the same in
compile-time and load-time address-binding
schemes;

logical (virtual) and physical addresses differ in
execution-time address-binding scheme

Logical address space is the set of all logical
addresses generated by a program

Physical address space is the set of all physical
addresses generated by a program



Memory-Management Unit (vmu)

Hardware device that at run time maps virtual to physical address

Many methods possible

To start, consider simple scheme where the value in the
relocation register is added to every address generated by a user
process at the time it is sent to memory

— relocation register
— MS-DOS on Intel 80x86 used 4 relocation registers

The user program deals with logical addresses (0 to max); it
never sees the real physical addresses (R to R+max)

— Say the logical address 25

— Execution-time binding occurs when reference is made to location
in memory

— Logical address bound to physical addresses



CPU

Dynamic relocation using a

relocation register

14000 ———
relocation
register
14000
logical physical
address address
e -
346 14346

MMU

memory

I

Relocatable
code




Contiguous Allocation

Multiple processes resides in memory

256000

300040

420940

880000

1024000

operating
system
process
300040
process base
120900
limit
process




Contiguous Allocation

 Main memory usually divided into two
partitions:

— Resident operating system, usually held in low
memory

— User processes then held in high memory

— Each process contained in single contiguous
section of memory



Contiguous Allocation (Cont.)

 Multiple-partition allocation
— Divide memory into several Fixed size partition
— Each partition stores one process

— Degree of multiprogramming limited by number of
partitions

— |f a partition is free, load process from job queue
— MFT (IBM 0S/360)



Contiguous Allocation (Cont.)

Multiple-partition allocation

OS

Hole

Variable partition scheme

Hole — block of available memory; holes of various size are
scattered throughout memory

Keeps a table of free memory

When a process arrives, it is allocated memory from a hole large
enough to accommodate it

Process exiting frees its partition, adjacent free partitions
combined

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS OS OS OS
process 5 process 5 process 5 process 5
process 9 process 9
process 8 process 10
process 2 process 2 process 2 process 2




Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes?

Dynamic storage allocation problem

* First-fit: Allocate the first hole that is big enough

* Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

— Produces the smallest leftover hole

*  Worst-fit: Allocate the largest hole; must also search entire list
— Produces the largest leftover hole



Hardware Support for Relocation
and Limit Registers

Relocation registers used to protect user processes from each other, and from changing
operating-system code and data
* Relocation register contains value of smallest physical address
* Limit register contains range of logical addresses — each logical address must be less
than the limit register
e Context switch
 MMU maps logical address dynamically

limit relocation
register register

logical physical
address yes address

CPU < » +
o

no

h 4

memory

trap: addressing error




Fragmentation

Processes loaded and removed from memory
— Memory is broken into little pieces

External Fragmentation — total memory space
exists to satisfy a request, but it is not contiguous

First fit analysis reveals that given N blocks
allocated, 0.5 N blocks lost to fragmentation

— 1/3 may be unusable -> 50-percent rule



Fragmentation (Cont.)

* Reduce external fragmentation by compaction

— Shuffle memory contents to place all free memory
together in one large block

— Compaction is possible only if relocation is dynamic,
and is done at execution time

* Change relocation reg.
— Cost

* Internal Fragmentation — allocated memory may
be slightly larger than requested memory; this size
difference is memory internal to a partition, but
not being used
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Paging

Physical address space of a process can be noncontiguous;
— process allocates physical memory whenever the latter is available

Divide physical memory into fixed-sized blocks called frames
— Size is power of 2, between 512 bytes and 16 Mbytes

Divide logical memory into blocks of same size called pages

— Torun a program of size N pages, need to find N free frames and load

program
R
S

page 0
page 1

Backing store likewise split into pages S

new process
\__/

Set up a page table to translate logical to physical addresses

System keeps track of all free frames



Paging Model of Logical and Physical Memory

frame
number
page 0 —_— 0
o1 —
page 1 1% 1| page 0
2 IS
age 2 2
pag 3 [
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
page table to translate logical to physical
addresses 7| page 3
physical

memory



Address Translation Scheme

* Address generated by CPU is divided into:
— Page number (p) — used as an index into a page table
* which contains base address of each page in physical memory
— Page offset (d) — offset within a page

* combined with base address to define the physical memory address that
is sent to the memory unit

page number

offset l
| page

page offset

P

d

m-n

n

— For given logical address space 2™ and page size 2"



Paging Hardware

logical physical

address address  fO000 ... 0000
CPU » p | d f d >
A
I O |
p{

— f

physical
memory

page table



Paging Example

Logical address O
(0*4+0)

Physical address:
(5*%4+0)=20

Logical address = 16
Page size=4
Physical memory=32

0[5

21 8
3|2

page table

Logical address 3
(0*4+3)

Physical address:
(5*4+0)=23

IoO0XNoO AN =O

T O3 3|—x——

12
13
14
15

logical memory 16

12

VO 33|—x——|ga@ ~0|lao oo
—

Logical address 4
User’s view (1*4+0)

= Physical address:
(6*4+0)=24

24

oQ -0 o

Run time address binding

Logical address 13
= (3*4+1)

Physical address:
physical memory (2*4+1)

n=2 and m=4 32-byte
memory and 4-byte pages



Paging

* External fragmentation??

e Calculating internal fragmentation

— Page size = 2,048 bytes

— Process size = 72,766 bytes

— 35 pages + 1,086 bytes

— Internal fragmentation of 2,048 - 1,086 = 962 bytes
* So small frame sizes desirable?

— But increases the page table size
— Poor disk I/O

— Page sizes growing over time
» Solaris supports two page sizes — 8 KB and 4 MB

* User’s view and physical memory now very different
— user view=> process contains in single contiguous memory space
* By implementation process can only access its own memory
— protection



Each page table entry 4 bytes (32 bits) long
Each entry can point to 232 page frames
If each frame is 4 KB

The system can address 244 bytes (16TB) of
physical memory

Virtual address space 16 MB.
Page table size?



Process P1 arrives

Requires n pages => n frames must be
available

Allocate n frames to the process P1

Create page table for P1



Frame table

free-frame list
14
13
18
20
15

AT
b

page O
page 1
page 2
page 3
new process
-

Use’s view

(a)

Before allocation

Free Frames

13

14

15

16

17

18

19

20

21

RAM

free-frame list
15

P T
b

page O
page 1
page 2
page 3
new process
...

0[14
1113
2|18
3120

new-process page table

(b)

13

14

15

16

17

18

19

20

21

After allocation

page 1

page O

page 2

page 3

RAM

System’s view



Implementation of Page Table

For each process, Page table is kept in main memory
Page-table base register (PTBR) points to the page table

Page-table length register (PTLR) indicates size of the
page table

In this scheme every data/instruction access requires two
memory accesses

— One for the page table and one for the data / instruction

The two memory access problem can be solved by the
use of a special fast-lookup hardware cache called
associative memory or translation look-aside buffers
(TLBs)



Associative memory

item |
i
Compare with
all stored
addresses R
Dat
simulataneouly key ‘a
Y
— 5
Address found
Y
Access location




Associative Memory

* Associative memory — parallel search
Page # Frame #

e Address translation (p, d)
— If p is in associative register, get frame # out
— Otherwise get frame # from page table in memory



Implementation of Page Table

For each process, Page table is kept in main memory
Page-table base register (PTBR) points to the page table
Page-table length register (PTLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses
— One for the page table and one for the data / instruction

The two memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative memory or translation look-aside buffers (TLBs)

TLBs typically small (64 to 1,024 entries)

On a TLB miss, value is loaded into the TLB for faster access next time
— Replacement policies must be considered (LRU)
— Some entries can be wired down for permanent fast access

Some TLBs store address-space identifiers (ASIDs) in each TLB entry — uniquely
identifies each process (PID) to provide address-space protection for that process
— Otherwise need to flush at every context switch



Paging Hardware With TLB

logical
address |
CPU > p d
page frame
number number
; TLB hit physical
> address
> Y
= f d >
TLB i
P
TLB miss
> f
——— physical
memory

page table



Effective Access Time

Associative Lookup = € time unit
— Can be < 10% of memory access time

Hit ratio = a

— Hit ratio — percentage of times that a page number is found in the
associative registers; ratio related to size of TLB

Consider a. = 80%, € = 20ns for TLB search, 100ns for memory access

Effective Access Time (EAT)
EAT = (100 + ) o + (200 + €)(1 — o)

Consider a = 80%, € = 20ns for TLB search, 100ns for memory access
— EAT=0.80x120+0.20x 220 = 140ns

Consider better hit ratio -> o = 98%, € = 20ns for TLB search, 100ns for
memory access

— EAT=0.98x120+0.02x220=122ns



Memory Protection

Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is

allowed
— Can also add more bits to indicate page execute-only, and so on

Valid-invalid bit attached to each entry in the page table:

— “valid” indicates that the associated page is in the process’ logical
address space, and is thus a legal page
— “invalid” indicates that the page is not in the process’ logical

address space
— Oruse PTLR

Any violations result in a trap to the kernel



Valid (v) or Invalid (i)
Bit In A Page Table

14 bit address space (0 to 16383)

Page size 2KB 0
Process P1 uses only O to 10468 ’
P2
P1 2| page O
00000 frame number valid—invalid bit
Page 1 page 0 \ / 3| page 1
0 [E28IRv
Page 2 page 1 i 1R 4| page 2
Page 3 page 2 2|4|v 5
37|V
page 3 48|V 6
5 [ESNIRV
page 4 6lo]i 7| page 3
10,468 | page 5 7 . 8| page 4
12,287 page table
/ 9| page 5
Internal fragmentation Use of PTLR (length)
page n




Shared Pages Example

System with 40 users
— Use common text editor

Text editor contains 150KB code 50KB data (page size 50KB)
— 8000KB!

Shared code

— One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)
* Code never changes during execution

Only one copy of the editor in the memory

Total memory consumption
— 40*50+150=2150KB



Shared Pages Example

ed1 0
3
ed 2 4 1| datai
ed3 8 2| data3
1
data 1 page table 3| edi
for P
1 ed 1
process P, 3 4 ed 2
ed 2
4 5
ed 3 6
7 6| ed3
data 2 page table
for P2 7 data 2
sl 2 process P, 5
ed2 4
9
ed 3 2
2 10
data 3 page table
for P, 11
process P,



Data share: example

writer.c
reader.c

int main()

{ int main()

{

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);

printf("shmid=%d ptr=%u\n",shmid, ptr);
strcpy(ptr,"hello");

i=shmdt((c

int shmid,f,key=3,i,pid;
char *ptr;

shmid=shmget((key_t)key,100,IPC_CREAT|0666);
ptr=shmat(shmid,NULL,0);

printf("shmid=%d ptr=%u\n",shmid, ptr);
printf("\nstr %s\n",ptr);

7

ptr

Shared
memory




Structure of the Page Table

* Memory requirement for page table can get huge using straight-
forward methods

— Consider a 32-bit logical address space as on modern computers
— Page size of 4 KB (212)
— Page table would have 1 million entries 220 (232 / 212)

— If each entry is 4 bytes -> 4 MB of physical address space / memory for
page table alone

* That amount of memory used to cost a lot
* Don’t want to allocate that contiguously in main memory

e Hierarchical Paging
 Hashed Page Tables

* Inverted Page Tables



Hierarchical Page Tables

* Break up the page table into multiple
pages

 We then page the page table

* Asimple technique is a two-level page
table



Two-Level Page-Table Scheme

0

/’//T
A 1

/ : 100
=4

™ 100

500
708
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= 708

outer page T~ 029
table — s
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page of 929

page table

page table

memory



Two-Level Paging Example

A logical address (on 32-bit machine with 4KB page size) is
divided into:

— a page number consisting of 20 bits

— a page offset consisting of 12 bits

Since the page table is paged, the page number is further
divided into:

— a 10-bit page number
— a 10-bit page offset

Thus, a logical address is as follows:

page number page offset
P1 P2 d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the inner page table



Two-Level Page-Table Scheme

Each divided page table 0
size=210 *4bytes=4KB \
=Page size 1 —-—-'//T
. 100 .
/ d
; 500 N >< Y’
1 \ : °
~[ 0 ] 500
X P | 5 E
708 P~ |
: 708
outer page \“‘* 929 :
table o \ ok
900 | >< :
page of 929
page table
page table .

Pentium [l memory



Address-Translation Scheme

logical address
Pi | P2 | d

.

>

=

table

outer page d {

page of
page table

Pentium Il



64-bit Logical Address Space

* Even two-level paging scheme not sufficient
* If page size is 4 KB (212)
— Then page table has 2°2 entries
— If two level scheme, inner page tables could be 210 4-byte entries
— Address would look like

iInner page
outer page page offset
P1 P2 d
42 10 12

— QOuter page table has 242 entries or 244 bytes

— One solution is to add a 2"d outer page table
— But in the following example the 2"d outer page table is still 234

bytes in size

* And possibly 4 memory access to get to one physical memory location



Three-level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page , outer page | innerpage offset

P P> P3 d
a2 10 10 12

SPARC (32 bits), Motorola 68030 support three and four level paging respectively



Hashed Page Tables

Common in virtual address spaces > 32 bits

The page number is hashed into a page table

— This page table contains a chain of elements hashing to the same
location

Each element contains (1) the page number (2) the value of the
mapped page frame (3) a pointer to the next element

Virtual page numbers are compared in this chain searching for a
match

— If a match is found, the corresponding physical frame is extracted



logical address

Hashed Page Table

P

4

physical
address

-—>Iq|SI’T|_T|p|r|

d

— >

hash table

=

physical
memory




Inverted Page Table

Rather than each process having a page table and
keeping track of all possible logical pages, track all frames

One entry for each frame

Entry consists the page number stored in that frame, with
information about the process that owns that page

Decreases memory needed to store each page table,

— but increases time needed to search the table when a page
reference occurs



Inverted Page Table Architecture

64 bit UltraSPARC, PowerPC,

logical :
address i pg)(;smal
address :
. : physical
CPU = pd| p d |A d memory

R_(._J

search l

Address space ID —

=
o

page table



Segmentation

* Memory-management scheme that supports user view of
memory

A program is a collection of segments
— A segment is a logical unit such as:

main program ;(;rr?]r;l:]i;generates the
procedure Loader assign the seg#
function
method
object
local variables, global variables
common block
stack
symbol table
arrays



User’s View of a Program

User specifies each address
by two quantities

(a) Segment name

(b) Segment offset

subroutine

symbol
table

Logical address contains the
tuple
<segment#, offset>

Sqrt

main
program

* Variable size segments without order
. * Length=> purpose of the program
logical address  Elements are identified by offset



Logical View of Segmentation

Logical address <segment-number, offset>

1
4
2
3
Logical
address _
space user space physical memory space

* Long term scheduler finds and allocates memory for all segments of a program
* Variable size partition scheme



Windows XP Memory Usage

Segment First Address Last Address Size

Code 401000x 403000x 002000x

~ 8 Kbytes
Static (Global) 403000x 703000x 300000x
Data ~ 3 megabytes
Heap 760000x 3A261000x 39800000x

~ 950 megabytes

Stack 22EF00x 16EF00X 1C0000x

~ 2 megabyte




LINUX Memory Usage

Segment First Address Last Address Size
Code 8048400x 8049900x 001500x
~ 6 Kbytes
Static (Global) 8049A00x 8349A00 300000x
Data ~ 3 megabytes
Heap B7EE,B0O00x 01CE,4000x B6000000x
~ 3 gigabytes
Stack BFFB,7334x 29BA,91E0x 9640,0000x

~ 2.5 gigabyte




0x08048368
0x08048369
0x080483¢6b
0x0804836e
Dx08048371
0x0804837¢6
D0x08048379
0x0804837c
Dx0804837%F
0x08048382
0=x08048384
Dx08048387
0x0804838c
Dx08048391
0x08048394

<main+0=:
<main+l>:
<main+3=:
<main+e>:

<main+9=:

<main+l4>:
<main+l7=:
<main+20>:
<main+23=:
<main+26>:
<main+28>:
<main+3l=:
<main+36>:
<main+dl=:

<main+dd=;

55
29
83
83
b8
g3
83
cl
cl
29
83
68
=g
83
=%

=1
ec
ad
00
c0
cl
=Fa3
=1}
cd
ac
cl
1f
cd
0z

ne
£0
na
nf
0f
04
n4

Oc
84
ff
10
oo

Memory image

0o 00

04 0g
ff f£f

0o 00

0x080483%b
0x0804839¢c
0x080483%
0x080483al
0x080483a8
0x080483af
0x080483b1
0x080483b4
0x080483b7
0x080483ba

<b+0>:
<b+1>:
<b+3>:
<b+6>:
<b+13>:
<b+20>:
<b+22>:
<b+25>:
<b+28>:
<b+31>:

55
89

2
2

c?
81
73
83
8b
0f
25

eb
ec
45
1d
26
ec
45
be
ff

08
fc 68 83
fc d9 83

04
fc
00
00 00 00

04 08
04 08

push
mov
sub
and
mov
add
add
shr
shl
sub
sub
push
call
add
call

febp
%esp, Yebp
S0x8, Sesp
SOxfE£££F£0, %esp 1 void b();
50x0, Yeax g void c(); :
50xf, Seax 4 Ft main(
50xf, %eax 5 Eantf( "Hello from main\n");
6 .
50x4, Seax 7 '
50x4, teax 8 /I This routine reads the opcodes from memory and prints them out.
feax, fesp ?0 "ioid b0
$0xc, Yesp i1 char *moving;
12
$0x80484c0 13 for ( moving = (char *){&main); moving < (char *)(&c); moving++ )
0xB80482b0 14 printf( "Addr = 0x%x, Value = %2x\n", (int)(moving), 255 & (int)*moving );
15
50x10, Sesp 16 void cf)
0x804839%b 17 {
18}
%ebp
tesp, $ebp

$0x8, %esp

$0x8048368, Oxfffffffc(%ebp)
$0xB80483d9, Oxfffffffc(%ebp)
0x80483d7 <b+60>

$0x4, %esp
Oxfffffffc(%ebp), teax
(%eax), %eax

$Oxff, %eax



Executable file and virtual address

Symbol table
m Name address

SQR 0
a.out
SUM 4 Virtual address
\_/ space
Paging view
0 Load 0
4 ADD 4
Segmentation view
<CODE, 0> Load <ST 0>
<CODE, 2> ADD <ST.4>




Segmentation Architecture

Logical address consists of a two tuple:
<segment-number, offset>

Segment table — maps two-dimensional logical address
to physical address;

Each table entry has:
— base — contains the starting physical address where the
segments reside in memory

— limit — specifies the length of the segment

Segment-table base register (STBR) points to the
segment table’s location in memory

Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR



Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
411000 | 4700

segment table 4300

segment 1 segment 2

segment 2

4700
logical address space segment 4

5700

6300

segment 1

6700
physical memory



Segmentation Hardware

.

CPU

limit |base
segment
table
—» S d

es

= y

no

Y

trap: addressing error

physical memory



Example of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
411000 | 4700

segment table 4300

segment 1 segment 2

segment 2

4700
logical address space segment 4

5700

6300

segment 1

6700
physical memory



Segmentation Architecture

Protection

Protection bits associated with segments

— With each entry in segment table associate:
* validation bit = 0 = illegal segment
* read/write/execute privileges

Code sharing occurs at segment level

Since segments vary in length, memory allocation is
a dynamic storage-allocation problem

— Long term scheduler

— First fit, best fit etc

Fragmentation



Segmentation with Paging

Key idea:
Segments are splitted into multiple pages

Each page is loaded into frames in the memory



Segmentation with Paging

e Supports segmentation with paging
— Each segment can be 4 GB
— Up to 16 Ksegments per process
— <selector(16), offset (32)>

— Divided into two partitions

* First partition of up to 8 K segments are private to process (kept in local
descriptor table LDT)

» Second partition of up to 8K segments shared among all processes (kept in
global descriptor table GDT)

* CPU generates logical address (six Segment Reg.)

— Given to segmentation unit
* Which produces linear addresses

— Physical address 32 bits

— Linear address given to paging unit Intel 80386
* Which generates physical address in main memory
* Paging units form equivalent of MMU IBM OS/2

* Pagessizes can be 4 KB



CPU

logical

Logical to Physical Address

Translation in Pentium

address
r g

segmentation

linear

unit

page number

address
'

paging
unit

physical

Page table=220
entries

address
e

physical
memory

page offset

P1

P>

d

10

10

12




Example: The Intel Pentium

logical address L selector ] offset [
descriptor table
< 8bytes — - Segment register
o '\
' segment descriplor f——psl  + |
NGEES >
A 4
linear address directory page offset page frame
» physical address
page directory page table
— directory entry —=| page table entry

page directory

PesD XONator




Intel Pentium Segmentation

logical address | selector offset

\
descriptor table

—> segment descriptor —(+ je—

¥
32-bit l[iInear address




Pentium Paging Architecture

(logical address)

. Ppage directory : page table i offset

31 22 21 l 12 11 J'
page 4-KB
L 4 table ™ page

page B
directory
CR3 —» 5 4-MB
register page
i
page directory | offset

|
31 2221 0




Virtual Memory



Background

* Code needs to be in memory to execute, but
entire program rarely used

— Error code, unusual routines, large data structures
* Entire program code not needed at same time

* Consider ability to execute partially-loaded
program

— Program no longer constrained by limits of physical
memory

— programs could be larger than physical memory
— More processes can be accommodated



Large virtual
space

page 0

page 1

page 2

Virtual Memory That is
Larger Than Physical Memory

page v

virtual
memory

/f_\
w
—
\\ ——
memory

map \_//

physical

memory

Small memory



Classical paging

Process P1 arrives

Requires n pages => n frames must be
available

Allocate n frames to the process P1

Create page table for P1

Allocate < n frames



Background

Virtual memory — separation of user logical memory from
physical memory

— Extremely large logical space is available to programmer

— Concentrate on the problem

Only part of the program needs to be in memory for
execution

— Logical address space can therefore be much larger than physical
address space

— Starts with address 0, allocates contiguous logical memory

— Physical memory
e Collection of frame

Virtual memory can be implemented via:
— Demand paging
— Demand segmentation



Demand Paging

Bring a page into memory only when it is needed

Lazy swapper — never swaps a page into memory
unless page will be needed

— Swapper that deals with pages is a pager

Less 1/O needed, no unnecessary |/O
— Less memory needed
— More users

Page is needed = reference to it valid address
information is available

— invalid reference = abort in PCB
— not-in-memory = bring to memory



Transfer of a Paged Memory to
Contiguous Disk Space

When we want to

execute a process, swap
in E N
~ \—/’/
Instead of swap in entire
process, load page orogram | swapou gl 1[ [ 2] [5s] |
A o0 50 st 700
Pager
. 8 ] o[ Ho[ H1[ ]
b 12 13[ 14 15[ ]
program
B >\ swap in 16D17Q18Q19Q
/ 20[ 21 J22[ 123[ ]
main

memory
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Page Table When Some Pages
Are Not in Main Memory

frame

valid—invalid
bit

N ¥

4 (v
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i
v
i
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Vv
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~N oo ok W N = O

page table
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Valid-Invalid Bit

* With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

* Initially valid—invalid bit is set to i on all entries
 Example of a page table snapshot:

Frame # valid-invalid bit

page table

Disk

address

During address translation, if valid—invalid bit in page table entry
is i = page fault




Page Fault

If the page in not in memory, first reference to that page will trap to
operating system:

page fault

. Operating system looks at PCB to decide:

— Invalid reference = abort

— Just not in memory (load the page)

. Get empty frame

. Swap page into frame via scheduled disk operation

. Reset page table to indicate page now in memory
Set validation bit=v

. Restart the instruction that caused the page fault



What Happens if There is no Free Frame?

Example
— 40 frames in memory
— 8 processes each needs 10 pages
— 5 of them never used

Two options

— Run 4 processes (10 pages)
— Run 8 processes (5 pages)

Increase the degree of multiprogramming
— Over allocating memory

Page fault
— No free frame

— Terminate? swap out? replace the page?
Page replacement — find some page in memory, not really in use, page it out
— Performance — want an algorithm which will result in minimum number of page faults

Same page may be brought into memory several times



Steps in Handling a Page Fault

Check -
page is on
PCB @ backing store

operating
system @
reference
@ trap
load M (e X |
restart page table
instruction
free frame _—
reset page bring in
table missing page
physical

memory



Pure Demand Paging

* Extreme case — start process with no pages in memory

— OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

— Swap in that page
— Pure demand paging
e Actually, a given instruction could access multiple pages
(instruction + data) -> multiple page faults
— Pain decreased because of locality of reference
* Hardware support needed for demand paging
— Page table with valid / invalid bit
— Secondary memory (swap device with swap space)
— Instruction restart after page fault



Steps in the ISR

admitted interrupt terminated

* |n Demand Paging

Trap to the operating system

scheduler dispatch

Save the user registers and process state I/O or event completion /O or event wait
Determine that the interrupt was a page fault @

Check that the page reference was legal and determine the location of the page on the disk

Get a free frame

o Uk wnN R

Issue a read from the disk to a free frame:

1. Waitin a queue for this device until the read request is serviced

2. Wait for the device seek and/or latency time

3. Beginthe transfer of the page to a free frame
7. While waiting, allocate the CPU to some other user

Receive an interrupt from the disk I/O subsystem (I/O completed)

9. Save the registers and process state of the running process
10. Determine that the interrupt was from the disk
11. Correct the page table and other tables to show page is now in memory
12. Wait for the CPU to be allocated to this process again

13. Restore the user registers, process state, and new page table, and then resume the interrupted
instruction



Performance of Demand Paging

Demand paging affects the performance of the computer systems

* Page FaultRate0<p<1
— if p = 0 no page faults
— if p=1, every reference is a fault

» Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)



Demand Paging Example

Memory access time = 200 nanoseconds
Average page-fault service time = 8 milliseconds

EAT = (1 — p) x 200 + p (8 milliseconds)
=(1-p)x200+p x 8,000,000
=200+ p x 7,999,800
If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!
If want performance degradation < 10 percent

— 220>200+7,999,800x p e —_
20>7,999,800x p \,\-’-4;-«-/
— p <.0000025 i A g
— < one page fault in every 400,000 memory accesses '»‘6:1 = -
e a- [F] [e] [H]
Better utilization of swap space o

Swap space =7 &~~~



Allocation of Frames

* How do we allocate the fixed amount of
memory among various processes?

* Single user system

— Trivial



Allocation of Frames

Each process needs minimum number of frames
Minimum number is defined by the instruction set
Page fault forces to restart the instruction

— Enough frames to hold all the pages for that instruction

Example:
— Single address instruction (2 frames)
— Two address instruction (3 frames)

Maximum of course is total frames in the system

Two major allocation schemes
— fixed allocation
— proportional allocation



Fixed and proportional Allocation

Equal allocation — m frames and n processes

— Each process gets m/n

For example, if there are 100 frames (after allocating frames
for the OS) and 5 processes, give each process 20 frames

— Keep some as free frame buffer pool
Unfair for small and large sized processes

Proportienal allocation — Allocate according to the size of
process—

— Dynamic as degree of multiprogramming, process sizes

cha nge m = 64
S; = size of process p; s=10
S=%Ys s, =127
10
m = totalnumber of frames a, =137 " 64 ~5

. S,
a, = allocation for p; = §IX m a, =221 . 64 ~59

27137



Priority Allocation

Allocation of frames

* Depends on multiprogramming level

* Use a proportional allocation scheme using
priorities along with size
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Need For Page Replacement
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to
select a victim frame (of that process)
- Write victim frame to disk

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the trap

Note now potentially 2 page transfers for page fault — increasing Effective
memory access time



Page Replacement

‘rame valid—invalid bit
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Page Replacement

frame valid—invalid bit
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118



Belady’s Anomaly

* This most unexpected result is known as
Belady’s anomaly — for some page-
replacement algorithms, the page fault rate
may increase as the number of allocated
frames increases

* |s there a characterization of algorithms
susceptible to Belady’s anomaly?



Global vs. Local Allocation

Frames are allocated to various processes

If process P; generates a page fault
— select for replacement one of its frames
— select for replacement a frame from another process

Local replacement — each process selects from only its own set of
allocated frames

— More consistent per-process performance
— But possibly underutilized memory

Global replacement — process selects a replacement frame from the
set of all frames; one process can take a frame from another

— But then process execution time can vary greatly

— But greater throughput ----- SO more common
Processes can not control its own page fault rate

— Depends on the paging behavior of other processes



Thrashing

* If a process uses a set of “active pages”
— Number of allocated frames is less than that
e Page-fault
— Replace some “active” page
— But quickly need replaced “active” frame back

— Quickly a page fault, again and again
— Thrashing = a process is busy swapping pages in and out

* OS monitors CPU utilization
— If low? Increase the degree of multiprogramming



Thrashing

Global page replacement
— Process enters new phase (subroutine call) execution
— Page fault
— Taking frames from other processes

* Replace “active” frames of other processes
— These processes start page fault

— These faulting processes wait on the device queue for disk
* Ready queue empty

B. PCB;, PCBg

. —_— - -

PC
— CPU utilization decreases D k/ I

di

unitof Q v
CPU scheduler increases the degree of multiprogramming

— More page faults

— Drop in CPU utilization
Page fault increases tremendously



THANK YOU!!!

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com
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