MET’s Institute of Engineering

“INDEXING AND MULTIWAY
TREE”

Prepared By
Prof. Anand N. Gharu

(Assistant Professor)
Computer Dept.

CLASS :SE COMPUTER 2019
SUBJECT : DSA (SEM-II)

UNIT @V 15 April 2024 1

Unit V Indexing and Multiway Trees (07 Hours)

Indexing and Multiway Trees- Indexing, indexing techniques-primary, secondary, dense, sparse,
Multiway search trees, B-Tree- insertion, deletion, B+Tree - insertion, deletion, use of B+ tree in

Indexing, Trie Tree.

#Exemplar/Case Heap as a Priority Queue
Studies

*Mapping of Course |CO2, CO3, CO5
Outcomes for Unit V

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Indexing Is used to speed up retrieving of data.

A Separate sequential file is maintained for indexing.

Index file contains a key field and a pointer to main file where actual data is

stored.

search-key | pointer

Address of data from index file 1s used to retrieve data from main file.

Index files are typically much smaller than the original file.

Advantages:

1. Indexing provide better flexibility. Key are ordered.
2. Requires less storage compared to main file. Only Keys are stored and pointers.
3. Inserting new records doesn’t affect main file. Need to update index structure.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Key Pointer 1D InstructorName Department Salary
10101 ~ 22222 | Einstein Physics 60000
12121 N 10101 | Srinivasan Computer 90000
22222 - 76543 | Singh Mechanical 70000
33456 » 33456 | Raj Computer 80000
76543 ul 12121 | Vijay Civil 75000

Index File Main File

Disadvantages :

1.

Increased database maintenance overhead:

Indexing can reduce insert and update performance since the index data structure must be updated each time data is modified

Indexing necessitates more storage space to hold the index data structure, which might increase the total size of the database.

. Choosing an index can be difficult:

2
3.
4

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Technigues

* Primary Indexing.
 Dense Indexing.
 Sparse Indexing.

« Secondary Indexing.

Indexing

\

l l

Primary Indexing Secondary Indexing

|
l l

Dense Sparse

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

l

Clustering Indexing

Indexing Techniques

Primary Indexing :
Primary indexing only has two columns. First column has the primary key values
which are the search keys. The second column has the pointers which contain the

address to the corresponding data block of the search key value. The table should be

ordered and there is a one-to-one relationship between the records in the index file

and the data blocks. This Is a more traditional yet a fast mechanism.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Dense Index :

There Is an index record that contains a search key and pointer for every search key

value In the data file. Though the Dense index Is a fast method it requires more

memory to store index records for each key value

1 pl 1 John 25
2 -I 2 Jack 24
3 - 3 Amey 18
4 - 4 Ellena 29
5 - S Kate 31
6 - 6 VVill 26

Index record Data block

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Sparse Index :

There are only a few Index records that point to the search key value. First, the
Index record starts searching sequentially by pointing to a location of a value in the
data file until it finds the actual location of the search key value. Though sparse

Indexing Is time-consuming, it requires less memory to store index records as It has
less of them.

1 Jdohn 25

2 Jack 24
1

3 Aumey 18
2

.1 Ellena 29
&

5 K ate 31

S Wil 25

Index record Data block
Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Secondary Indexing (Non clustered Indexing) :

The columns in the Secondary indexing hold the values of the candidate key along
with the respective pointer which has the address to the location of the values.
Index and data are communicated with each other through an intermediate node.

1 / 2 Jack 24
- -

2 2 1 Jlohn 25

= .

3 / 4 = will 26

4 /// 5 b 3 Amey 18
] -

5 / 6 4 Ellena 29

& 7 s Kate 31

Index file Intermediate node Data block

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Clustered Indexing :

The table 1s ordered in clustered indexing. At the times when the Indexes are
created using the non-primary key, we combine two or more columns together to
get the unigue values to identify data uniquely and use It to create the index.

The pointers are pointed to the cluster as a whole.

=
Sub_id ointer /" 1 Jobr 25

1 i
1 BN 19

= 1 CSirm 20

3

2 -
| Ellenas =29

i

Ronald 19

E‘. —
L= Wil I 26
(&7 by I =22

Index file Clustered data file
Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Multilevel Indexing :

If the primary index does not fit in the memory, multilevel indexing is used. When
the database increases Iits size the indices also get increased. A single-level index
can be too big to store in the main memory. In multilevel indexing, the main data

block breaks down into smaller blocks that can be stored in the main memory.

1. B+ Tree Indexing

2. B- Tree Indexing

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

 Hashed Indexes
* Tree Indexing (B-Tree).
* Trie indexing — (Compact Trie).

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

 Hashed Indexes:
« Hash indexes are same as hash tables.
 Record of file are divided among buckets. A bucket is either one block or cluster of block.
 Hashing function maps a key into a bucket number. Buckets are numbered from 0 to b — 1.
« Translation of bucket number to disk block is done with the help of bucket directory.

0 . 230 480
1 . 460 790 460
N 530 810 580
321 382
531 392
651 662
b-1

Bucket DireCtory Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

* Tree Indexing:
« AV/L tree is example of Tree Indexing.

* Indexes can be stored In tree nodes.
« Search, insertion and deletion can be easy.

« An m- way search tree reduces the height of a search tree and thus decreases no. of
disk access.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

* Tree Indexing:
« AV/L tree is example of Tree Indexing.

* Indexes can be stored In tree nodes.
« Search, insertion and deletion can be easy.

« An m- way search tree reduces the height of a search tree and thus decreases no. of
disk access.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques
* Trie Indexing:

e Trie is an efficient information reTrieval data
structure.

It is useful when key values are of varying size.

Atrie is a tree of degree m>=2.

Useful for storing words as sequence of characters.

Each path from root to leaf node corresponds to a
word.

Example : Big, Bigger, Biggest, Good, Google.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Multiway Search Tree

 Allows node to store multiple keys.

* Nodes have more than 2 children.

* All leafs are at same level.

« Each node have N children and N-1 search keys.

 Search, Insert and Delete operations can be performed on the Multiway
search tree.

« Example: B-Tree, B+-Tree, Splay tree.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

« A B-tree Is a tree data structure that keeps data sorted and allows searches,
Insertions, and deletions in logarithmic amortized time.

 Unlike self-balancing binary search trees, it is optimized for systems that read
and write large blocks of data.

* It Is most commonly used In database and file systems

* A self balanced search tree with multiple keys in every node and more than
two children for every node.
« A B-tree of order M iIs a M-way search tree with following properties:
* Root can have 1 to M-1 keys.
 All nodes (except root node) have between (M-1)/2 and M-1 keys.
 All leaves are at same levels.
« If node have k children, then it has k-1 keys.
« Keys are stored in sorted order.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

G, 17

12

203

20

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

* Insertion of node In B-Tree:
 Step 1 - Check whether tree is Empty.

« Step 2 - If tree Is Empty, then create a new node with new key value and insert it into
the tree as a root node.

« Step 3 - If tree is Not Empty, then find the suitable leaf node to which the new key
value Is added using Binary Search Tree logic.

 Step 4 - If that leaf node has empty position, add the new key value to that leaf node in
ascending order of key value within the node.

« Step 5 - If that leaf node is already full, split that leaf node by sending middle value to
Its parent node. Repeat the same until the sending value is fixed into a node.

 Step 6 - If the spilting Is performed at root node then the middle value becomes new
root node for the tree and the height of the tree is increased by one.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

 Construct a B-Tree of order 3 for following data: 50, 30, 21, 90, 10, 13, 20,
70, 25, 92, 80.

6"{:’_“&" _ OYF/(W q 6> T@ 2)0‘—, \-93
50 Nuvof k Yo Hol&mj—— 2 - overfls — [\0]B]a] 5890 o] =] ”Z[
+

Overtlow con ihon when K ' nocle s 5

Flosol childvens — 3 fr eatd node possible

2
> 5o P 20
% 30 | 50] 30

_— .. 2

» ‘_21, — va‘?{oﬂ 50 “gf’]'} pocle 5) 13 3”' 7o
m O] Ret] WTel®< 0verPlow
g0
df) m 90 134 30 Q %'OVWY‘-QO'—O
- = (sl o R
| 30 |

e . o Bl 7o

k] {&[E0] [} %o\ (40

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

 Construct a B-Tree of order 3 for following data: 50, 30, 21, 90, 10, 13, 20,
70, 25, 92, 80.

» B L
m m
5] _fwh [
ovele o =

3 12
.m 32 - B-tree
e}z 4'!@
rf\ 0.
¢,)10
| @)%7) [l <o~

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

—Q

B-Tree

 Construct a B-Tree of order 5 for following data: 78, 21, 14, 11, 97, 85, 74,
63, 45, 42, 57, 20, 16, 19, 32, 30, 31.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

 Construct a B-Tree of order 5 for following data: 78, 21, 14, 11, 97, 85, 74,

63, 45, 42, 57, 20, 16, 19, 32, 30, 31.

16

21

11

14

19

20

32

30

31

57

78

42

45

63

74

85

97

B — Tree.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

 Construct a B-Tree of order 3 for following data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

2| 6(8
A LD I e 1 I A I A

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

* Deletion Operation:

18

8 11] 13

17

95

* Facts of B-tree of degree m.

25

29

AN

30 80
50| 61} 73 39
43 | 45 || 51} 56| 58 || 68|70 || 75| 76|78 84| 86|87 || 90

* If Key to be deleted is in leaf node.

 Anode can have a maximum of m children.

A node can contain a maximum of m—1 Kkeys.

92

97

99

100

« Node contains keys more than min. no. of keys

A node should have a minimum of [%} children.

« Node contains min. no. of keys.

» Borrow from immediate Left sibling.
» Borrow from immediate Right sibling.

A node (except root node) should contain a minimum+ Both Left & Right sibling have min. no. of keys.

of [%} — 1 Kkeys.

* If key to be deleted is in internal node.

Inorder Predecessor, Inorder Sucessor

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree 50 | 80
9 |17 61| 75 89|95
AN
5|8 11|13 18 | 29 43| 45|50] 58 70|73 || 76|78 || 84|86|87 || 90|92 || 9799|100
58
\
9 |30 78 189
8 11|13 | 17|29 43 | 45 |50 70|73 | 76 84(86|87 || 90|92 9;9 100

Bt-Tree

* Insertion Operation:

During insertion following properties of B+ Tree must be followed:

1. Each node except root can have a maximum of M children and at least ceil(M/2)
children.

2. Each node can contain a maximum of M — 1 keys and a minimum of ceil(M/2) — 1 keys.

3. The root has at least two children and atleast one search key.

4. While insertion overflow of the node occurs when it contains more than M — 1 search
key values.

5. Here M is the order of B+ tree.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Bt-Tree

* Insertion Operation:

Steps for insertion in B+ Tree
Every element is inserted into a leaf node. So, go to the appropriate leaf node.
Insert the key into the leaf node in increasing order only if there is no overflow. If there is an overflow go ahead with the

following steps mentioned below to deal with overflow while maintaining the B+ Tree properties.

N T ol 1
Properties for insertion B+ Tree

Case 1: Overflow in leaf node “pointer

1. Split the leaf node into two nodes. Inssrt &

2. First node contains ceil((m-1)/2) values. ‘

3. Second node contains the remaining values. 1 = \F o 13 [+
4. Copy the smallest search key value from second node to the parent node.(Right biased)

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Bt-Tree

* Insertion Operation:

Below is the illustration of inserting 15 into B+ Tree of order of 5:

]
I

10 || 20 ||30 || 40

Case 2: Overflow in non-leaf node

INSERT 15

Split the non leaf node into two nodes.

First node contains ceil(m/2)-1 values.

20

Move the smallest among remaining to the parent.

H W e

n
[l
=i
1

Second node contains the remaining keys

10 15 30 || 40

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Bt-Tree

* Deletion Operation: ~__—

4

17

17

19

/

19

A 4

Y

* Facts of B*-tree of degree m.

* Anode can have a maximum of m children.
* A node can contain a maximum of m—-1 keys.

* Anode should have a minimum of [%} children.

« Anode (except root node) should contain a minimum

of [%} — 1 Kkeys.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

45

Bt-Tree

A B*-tree Is a variation of B-tree data structure.
 Data pointers in B*-tree are stored only at leaf nodes of tree.
e B*-tree structure of a leaf node differs from the structure of internal nodes.

» Advantage of B+-tree index files:

« Automatically reorganizes itself with small, local, changes, in the face of insertions and
deletions.

 Reorganization of entire file is not required to maintain performance.

 Disadvantage of B+-trees:
 Extra insertion and deletion overhead, space overhead.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Bt-Tree

Einstein| | Gold HSnmvasan - Internal nodes
Leaf nodes--
L N N
| |Einstein| |El Said Gold | | Katz Mozart Singh > |Srinivasan | Wu
—-(10101 | Srinivasan | Comp. Sci. | 65000
| 12121 | Wu Finance 90000
> 15151 | Mozart Music 40000
»| 22222 | Einstein Physics 95000
> 32343 | El Said History 80000
»| 33456 | Gold Physics 87000
»| 45565 | Katz Comp. Sci. | 75000
» 58583 | Califieri History 60000
—— [76543 Singh Finance 80000
> 76766 | Crick Biology 72000
> 83821 | Brandt Comp. Sci. | 92000
L 3| 98345 | Kim Elec. Eng. 80000

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+Tree
 Construct a B*-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,

29, 15, 26, 27, 34, 39, 36. = .
Overflow, so
23303132 ’
1. split node = > 22 23 2428 > 31 32
30
22233031
5 22 <= Overflow,
4. 24 30
32 so split node / 24. 15, 26
30 15 |22 | 23 |24 » 26 |28 129 | 30 - 31 32
22 23130 2 31 32 Overflow, so)4 30 97
split node \
3 28 30
15 |22 | 23 | 24 — 26 27 28 23 - 31 32
30
22| 23] 28| 30 > 31 32

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree

 Construct a B*-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,
29, 15, 26, 27, 34, 39, 36.

Ov.erflow, o) 24 30

split node 27

15 122 | 23 |24 > 26 27 28 23 » 31 32

30
24 28 30
15 122 | 23 |24 » 26|27 28 » 29 | 30 > 31 32
24 28 30 34. 39
15 |22 | 23 |24 » 262728 » 29 | 30 » 31132134 |39

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+ Tree

 Construct a B*-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,
29, 15, 26, 27, 34, 39, 36.

24 | 28 | 30 36

/ Overflow, so
split node
15 (22 | 23 |22 | 26|27 28 = 29 | 30 | 3! 323934 36 /

24 | 28 | 30 | 34

e e

15 |22 | 23 |24 » 2627|128 —{ 29 | 30 » 31132|34 » 36| 39

Bt - Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+ Tree

 Construct a B*-Tree of order 3 for following data: 6, 19, 17, 11, 3, 12, 8, 20,
22,23, 13, 18.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+ Tree

 Problem: Insert the following key values 6, 16, 26, 36, 46 on a B+ tree with
order = 3.

Insert ﬁ: 16: 26: 36, 46 on a B+ tree with order =3 insert 20
L = é",—.’-
Insert 6, 16
6 || 16 > / f \
o 16 || 2
Insert 36 T
| 26
16 36

g S— 5 SIRE 4-} 26 > 36
20 0
Bt - Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Treevs B+ Tree

SN B Tree

1 Search keys can not be repeatedly stored.

2 Data can be stored in leaf nodes as well as internal
nodes

3 Searching for some data is a slower process since data

can be found on internal nodes as well as on the leaf

nodes.

~ Deletion of internal nodes are so complicated and time
consuming.

5 Leaf nodes can not be linked together.

B+ Tree

Redundant search keys can be present.

Data can only be stored on the leaf nodes.

Searching Is comparatively faster as data can only

be found on the leaf nodes.

Deletion will never be a complexed process since

element will always be deleted from the leaf nodes.

Leaf nodes are linked together to make the search

operations more efficient.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap /E)\
« AHeap is a complete binary tree.) h

 In complete binary tree elements are filled

level by level from left to right.

 Bottom level may not be completely filled.

» A Binary Heap is either Min or Max Heap. @ 0 @

 Min Heap: Value of each node is greater
than or equal to the value of its parent, with
the minimum-value element at the root.

Complete Binary Tree

« Max Heap: Value of each node is less than e 0
or equal to the value of its parent, with the
maximum-value element at the root.

Min Heap Max Heap

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
* Insertion of node in Min-Heap or Max-Heap tree.
« Add element to bottom level of heap at the most left.
« Compare added element with its parent if they are in the correct order , stop.
« If not, swap the element with its parent and return to previous step.

Note: Min-Heap or Max-Heap tree is complete Binary tree. So elements are added at leaf from left to right.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap

* Create Max Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

e Insert6: @ Insert 2 : e Insert 10:

Not following Max Heap Property: Parent == Child

@ Insert 12: @ @ @
(& (3) (& 12) (5 (1) (s
(2 ON®) ©) ©

Not following Max Heap Property: Not following Max Heap Property Not following Max Heap Property:
Parent == Child Parent == Child Parent == Child

 Insert3:

 |nsert 60: Insert 7:

Not following Max Heap Property: Not following Max Heap Property:

Parent == Child Parent == Child
Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap

* Create Max Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

 Insert 200:

Not following Max Heap Property:
Parent == Child

Not following Max Heap Property:
Parent == Child

Insert 8:

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
 Create Min Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

> .‘ﬁiq‘(f} 6 .
* i psex 10

a MI H&lf'

2> insev} 3 - ; ipsesd 12 insevk- 6o ¢
5 e

No m o en? Propety

forloweat

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap

* Deletion of node in Min-Heap or Max-Heap tree.
 Replace the value of root with the value of rightmost leaf and remove leaf from tree.
« Now check whether the tree follows the Heap property.

* If not, swap the element with its parent and return to previous step. For Max-Heap if
parent is less than both the children then replace the root with larger child.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Heap Sort
* From the unsorted list create a Heap tree (Min or Max).
» Once Heap Is created, now select the first element(root) and add it to array.

« Remove first element and rearrange the Heap and repeat above step.
 Heap sort algorithm:

1.

> oA W N

Create binary tree from the given elements.

Convert binary tree to Min Heap or Max Heap.

Delete the root element from the Heap.

Add deleted element to array.

Rearrange the Heap and repeat the step 3 to 5 till Heap is empty.
If heap Is empty , display sorted list from array and stop.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Heap Sort
. Sort numbers in . 'nser S0.

ascending order
using heapsort :
50, 2, 1, 84, 12,
4,102.

* Create Max-Heap:

2 Insex-@4:

No payHesp Vgt
followeel

I\)O Ngn()r\ ea? ?7*? ”ﬂf
folloseeh

Prepared by Prof. Anand Gharu, ME

Heap Sor,

« Sort numbers in Sovhing Datw. -
ascending order Aoy L—-La_ A \-‘WJ\
using heapsort : ' s 1
50, 2,1, 84,12, 4, Necakvn 2.4 Erw&ran e E‘i“
102. Aoy LT T 11 189001 &) 0} ~me &G (o)
« Sorting Data: VRS es e T) @) . » 4z ® IR0
‘.’ Q o ‘!f\;T
& eo \—\?&mﬂ ey & O3 M@ : @
\lorakien 3 a 2 va% R <o
k”z"’ 84\ \e . —
' i:._b\qg ;’ 2 ; > 4
Reorrnge L2
.“\'m Lf ',;7 7’ -
Prreoy 12{so\8alro]/ Y &
RV

(| KNS

2R

Sort the numbers using heapsort: 12, 45, 21, 76, 83, 97, 82, 54.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Sort the numbers using heapsort: 25, 4, 70, 1, 60, 10, 85, 11.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Questions
* Insert keys to a 5-way B-tree: 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, §, 19, 4, 31, 35, 56.
« Construct B*tree of order 3: 1, 42, 28, 21, 31, 10, 17, 7, 31, 25, 20, 18.
« Explain Heap tree, Max-Heap & Min-Heap.
« Write Algorithm & Pseudo code for Inserting Element in Min Heap and Max Heap.
 Create Min Heap & Max Heap for given data: 10, 20, 15, 12, 25, 30, 14, 2, 5, 4.
 Delete root node of above Heap tree and Re-arrange Heap tree.
 Write algorithm to sort the numbers in ascending order using heapsort.

« Sort the numbers using heapsort: 18, 13, 12, 22, 15, 24, 10, 16, 19, 14, 30.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

References

https://www.]avatpoint.com/indexing-in-dbms

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms

THANK YOU!!

My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

https://anandgharu.wordpress.com/

