
“INDEXING AND MULTIWAY

TREE”
Prepared By

Prof. Anand N. Gharu
(Assistant Professor)

Computer Dept.

15 April 2024
.

CLASS : SE COMPUTER 2019

SUBJECT : DSA (SEM-II)

UNIT : V
1

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

• Indexing is used to speed up retrieving of data.

• A Separate sequential file is maintained for indexing.

• Index file contains a key field and a pointer to main file where actual data is

stored.

• Address of data from index file is used to retrieve data from main file.

• Index files are typically much smaller than the original file.

Advantages:

1. Indexing provide better flexibility. Key are ordered.

2. Requires less storage compared to main file. Only Keys are stored and pointers.

3. Inserting new records doesn’t affect main file. Need to update index structure.

search-key pointer

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Pointer ID InstructorName Department Salary

22222 Einstein Physics 60000

10101 Srinivasan Computer 90000

76543 Singh Mechanical 70000

33456 Raj Computer 80000

12121 Vijay Civil 75000

… …. …. …

Main File

Key

10101

12121

22222

33456

76543

….

Index File

Disadvantages :

1. Increased database maintenance overhead:

2. Choosing an index can be difficult:

3. Indexing can reduce insert and update performance since the index data structure must be updated each time data is modified

4. Indexing necessitates more storage space to hold the index data structure, which might increase the total size of the database.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques
• Primary Indexing.

• Dense Indexing.

• Sparse Indexing.

• Secondary Indexing.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Primary Indexing :

Primary indexing only has two columns. First column has the primary key values

which are the search keys. The second column has the pointers which contain the

address to the corresponding data block of the search key value. The table should be

ordered and there is a one-to-one relationship between the records in the index file

and the data blocks. This is a more traditional yet a fast mechanism.

.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Dense Index :

There is an index record that contains a search key and pointer for every search key

value in the data file. Though the Dense index is a fast method it requires more

memory to store index records for each key value

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Sparse Index :

There are only a few index records that point to the search key value. First, the

index record starts searching sequentially by pointing to a location of a value in the

data file until it finds the actual location of the search key value. Though sparse

indexing is time-consuming, it requires less memory to store index records as it has

less of them.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Secondary Indexing (Non clustered Indexing) :

The columns in the Secondary indexing hold the values of the candidate key along

with the respective pointer which has the address to the location of the values.

Index and data are communicated with each other through an intermediate node.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Clustered Indexing :

The table is ordered in clustered indexing. At the times when the indexes are

created using the non-primary key, we combine two or more columns together to

get the unique values to identify data uniquely and use it to create the index.

The pointers are pointed to the cluster as a whole.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques

Multilevel Indexing :

If the primary index does not fit in the memory, multilevel indexing is used. When

the database increases its size the indices also get increased. A single-level index

can be too big to store in the main memory. In multilevel indexing, the main data

block breaks down into smaller blocks that can be stored in the main memory.

1. B+ Tree Indexing

2. B- Tree Indexing

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques
• Hashed Indexes

• Tree Indexing (B-Tree).

• Trie indexing – (Compact Trie).

Indexing Techniques
• Hashed Indexes:

• Hash indexes are same as hash tables.

• Record of file are divided among buckets. A bucket is either one block or cluster of block.

• Hashing function maps a key into a bucket number. Buckets are numbered from 0 to b – 1.

• Translation of bucket number to disk block is done with the help of bucket directory.

0

1

.

.

.

.

.

.

.

b – 1

230

460

580

321

531

651

.

480

790

810

382

392

662

.

460

580

Bucket Directory Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques
• Tree Indexing:

• AVL tree is example of Tree Indexing.

• Indexes can be stored in tree nodes.

• Search, insertion and deletion can be easy.

• An m- way search tree reduces the height of a search tree and thus decreases no. of
disk access.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Indexing Techniques
• Tree Indexing:

• AVL tree is example of Tree Indexing.

• Indexes can be stored in tree nodes.

• Search, insertion and deletion can be easy.

• An m- way search tree reduces the height of a search tree and thus decreases no. of
disk access.

Indexing Techniques
• Trie Indexing:

• Trie is an efficient information
structure.

reTrieval data

• It is useful when key values are of varying size.

• A trie is a tree of degree m>=2.

• Useful for storing words as sequence of characters.

• Each path from root to leaf node corresponds to a
word.

• Example : Big, Bigger, Biggest, Good, Google.

B

i

g

g

e

r s

t $

$

G

o

o

g

l

e

$

d

$

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Multiway Search Tree
• Allows node to store multiple keys.

• Nodes have more than 2 children.

• All leafs are at same level.

• Each node have N children and N-1 search keys.

• Search, Insert and Delete operations can be performed on the Multiway
search tree.

• Example: B-Tree, B+-Tree, Splay tree.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• A B-tree is a tree data structure that keeps data sorted and allows searches,

insertions, and deletions in logarithmic amortized time.

• Unlike self-balancing binary search trees, it is optimized for systems that read
and write large blocks of data.

• It is most commonly used in database and file systems

• A self balanced search tree with multiple keys in every node and more than
two children for every node.

• A B-tree of order M is a M-way search tree with following properties:

• Root can have 1 to M-1 keys.

• All nodes (except root node) have between (M-1)/2 and M-1 keys.

• All leaves are at same levels.

• If node have k children, then it has k-1 keys.

• Keys are stored in sorted order.

B-Tree
•

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• Insertion of node in B-Tree:

• Step 1 - Check whether tree is Empty.

• Step 2 - If tree is Empty, then create a new node with new key value and insert it into
the tree as a root node.

• Step 3 - If tree is Not Empty, then find the suitable leaf node to which the new key
value is added using Binary Search Tree logic.

• Step 4 - If that leaf node has empty position, add the new key value to that leaf node in
ascending order of key value within the node.

• Step 5 - If that leaf node is already full, split that leaf node by sending middle value to
its parent node. Repeat the same until the sending value is fixed into a node.

• Step 6 - If the spilting is performed at root node then the middle value becomes new
root node for the tree and the height of the tree is increased by one.

B-Tree
• Construct a B-Tree of order 3 for following data: 50, 30, 21, 90, 10, 13, 20,

70, 25, 92, 80.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• Construct a B-Tree of order 3 for following data: 50, 30, 21, 90, 10, 13, 20,

70, 25, 92, 80.

B-tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• Construct a B-Tree of order 5 for following data: 78, 21, 14, 11, 97, 85, 74,

63, 45, 42, 57, 20, 16, 19, 32, 30, 31.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• Construct a B-Tree of order 5 for following data: 78, 21, 14, 11, 97, 85, 74,

63, 45, 42, 57, 20, 16, 19, 32, 30, 31.

32

57 78

11 14

16 21

19 20 30 31 42

B – Tree.

45 63 74 85 97

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree
• Construct a B-Tree of order 3 for following data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Deletion Operation:

• A node can contain a maximum of m – 1 keys.

• A node should have a minimum of
𝒎

𝟐
children.

of
𝒎

𝟐
− 𝟏 keys.

• Inorder Predecessor, Inorder Sucessor

B-Tree

9 18 89 95

2 5 8 11 13 17 84 86 87 97 99 100

30 80

50 61 73

25 29 43 45

• Facts of B-tree of degree m.

• A node can have a maximum of m children.

51 56 58 75 76 78 68 70 90 92

• If Key to be deleted is in leaf node.

• Node contains keys more than min. no. of keys

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Node contains min. no. of keys.

• A node (except root node) should contain a minimum•

• Borrow from immediate Left sibling.

• Borrow from immediate Right sibling.

Both Left & Right sibling have min. no. of keys.

• If key to be deleted is in internal node.

B-Tree

58

9 30 78 89

2 5 8 11 13 17 29 84 86 87 90 92 99 100 43 45 50 70 73 76

30 80

9 17 89 95

2 5 8 11 13 18 29 84 86 87 90 92 97 99 100 43 45 50 58

61 75

76 78 70 73

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Insertion Operation:

B+-Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

During insertion following properties of B+ Tree must be followed:

1. Each node except root can have a maximum of M children and at least ceil(M/2)

children.

2. Each node can contain a maximum of M – 1 keys and a minimum of ceil(M/2) – 1 keys.

3. The root has at least two children and atleast one search key.

4. While insertion overflow of the node occurs when it contains more than M – 1 search

key values.

5. Here M is the order of B+ tree.

• Insertion Operation:

B+-Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Steps for insertion in B+ Tree

Every element is inserted into a leaf node. So, go to the appropriate leaf node.

Insert the key into the leaf node in increasing order only if there is no overflow. If there is an overflow go ahead with the

following steps mentioned below to deal with overflow while maintaining the B+ Tree properties.

Properties for insertion B+ Tree

Case 1: Overflow in leaf node

1. Split the leaf node into two nodes.

2. First node contains ceil((m-1)/2) values.

3. Second node contains the remaining values.

4. Copy the smallest search key value from second node to the parent node.(Right biased)

• Insertion Operation:

B+-Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Case 2: Overflow in non-leaf node

1. Split the non leaf node into two nodes.

2. First node contains ceil(m/2)-1 values.

3. Move the smallest among remaining to the parent.

4. Second node contains the remaining keys

Below is the illustration of inserting 15 into B+ Tree of order of 5:

• Deletion Operation:

• Facts of B+-tree of degree m.

• A node can have a maximum of m children.

• A node can contain a maximum of m – 1 keys.

• A node should have a minimum of
𝒎

𝟐
children.

• A node (except root node) should contain a minimum

of
𝒎

𝟐
− 𝟏 keys.

B+-Tree 17

19

1 4

4

17 19 45

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+-Tree
• A B+-tree is a variation of B-tree data structure.

• Data pointers in B+-tree are stored only at leaf nodes of tree.

• B+-tree structure of a leaf node differs from the structure of internal nodes.

• Advantage of B+-tree index files:

• Automatically reorganizes itself with small, local, changes, in the face of insertions and
deletions.

• Reorganization of entire file is not required to maintain performance.

• Disadvantage of B+-trees:

• Extra insertion and deletion overhead, space overhead.

B+-Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Construct a B+-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,
29, 15, 26, 27, 34, 39, 36.

1.

2. 22

3. 28

23 30 31 32

22 23 30 31
32

<= Overflow,
so split node

30

22 23 30 31 32

30

22 23 28 30 31 32

30

22 23 24 28
30

31 32
Overflow, so
split node = >

24 30

15 22 23 24 26 28 29 30

24, 15, 26

31 32

24 30

15 22 23 24 31 32
26 27 28 29

30

27
Overflow, so
split node

4.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

24

B+Tree

B-Tree
• Construct a B+-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,

29, 15, 26, 27, 34, 39, 36.

24 30

15 22 23 24 31 32
26 27 28 29

30

27

Overflow, so
split node

29 30

24 28 30

15 22 23 24 31 32 26 27 28

34, 39

29 30

24 28 30

15 22 23 24 31 32 34 39 26 27 28

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Construct a B+-Tree of order 5 for following data: 30, 31, 23, 32, 22, 28, 24,
29, 15, 26, 27, 34, 39, 36.

36

29 30

24 28 30

15 22 23 24
31 32 34 36

39
26 27 28

Overflow, so
split node

29 30

B+ - Tree

24 28 30 34

15 22 23 24 31 32 34 26 27 28 36 39

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+Tree

B+Tree
• Construct a B+-Tree of order 3 for following data: 6, 19, 17, 11, 3, 12, 8, 20,

22, 23, 13, 18.

B+ - Tree

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B+Tree
• Problem: Insert the following key values 6, 16, 26, 36, 46 on a B+ tree with

order = 3.

B+ - Tree
Prepared by Prof. Anand Gharu, MET's IOE, Nashik

B-Tree vs B+ Tree
• .

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
• A Heap is a complete binary tree.

• In complete binary tree elements are filled
level by level from left to right.

• Bottom level may not be completely filled.

• A Binary Heap is either Min or Max Heap.

• Min Heap: Value of each node is greater
than or equal to the value of its parent, with
the minimum-value element at the root.

• Max Heap: Value of each node is less than
or equal to the value of its parent, with the
maximum-value element at the root.

Complete Binary Tree

Min Heap Max Heap

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
• Insertion of node in Min-Heap or Max-Heap tree.

• Add element to bottom level of heap at the most left.

• Compare added element with its parent if they are in the correct order , stop.

• If not, swap the element with its parent and return to previous step.

Note: Min-Heap or Max-Heap tree is complete Binary tree. So elements are added at leaf from left to right.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap

• Insert 3: Insert 12:

• Insert 60: Insert 7:

•Create Max Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

• Insert 6 : 6 Insert 2 : 6 Insert 10:

2

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
•Create Max Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

• Insert 200:

• Insert 8:

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
• Create Min Heap with following elements : 6, 2, 10, 3, 12, 60, 7, 200, 8.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Binary Heap
• Deletion of node in Min-Heap or Max-Heap tree.

• Replace the value of root with the value of rightmost leaf and remove leaf from tree.

• Now check whether the tree follows the Heap property.

• If not, swap the element with its parent and return to previous step. For Max-Heap if
parent is less than both the children then replace the root with larger child.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Heap Sort
• From the unsorted list create a Heap tree (Min or Max).

• Once Heap is created, now select the first element(root) and add it to array.

• Remove first element and rearrange the Heap and repeat above step.

• Heap sort algorithm:

1. Create binary tree from the given elements.

2. Convert binary tree to Min Heap or Max Heap.

3. Delete the root element from the Heap.

4. Add deleted element to array.

5. Rearrange the Heap and repeat the step 3 to 5 till Heap is empty.

6. If heap is empty , display sorted list from array and stop.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Heap Sort
• Sort numbers in

ascending order
using heapsort :
50, 2 , 1, 84, 12,
4, 102.

• Create Max-Heap:

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

• Sort numbers in
ascending order
using heapsort :
50, 2 , 1, 84, 12, 4,
102.

• Sorting Data:

Heap Sort

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Sort the numbers using heapsort: 12, 45, 21, 76, 83, 97, 82, 54.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Sort the numbers using heapsort: 25, 4, 70, 1, 60, 10, 85, 11.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

Questions
• Insert keys to a 5-way B-tree: 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56.

• Construct B+ tree of order 3 : 1, 42, 28, 21, 31, 10, 17, 7, 31, 25, 20, 18.

• Explain Heap tree, Max-Heap & Min-Heap.

• Write Algorithm & Pseudo code for Inserting Element in Min Heap and Max Heap.

• Create Min Heap & Max Heap for given data: 10, 20, 15, 12, 25, 30, 14, 2, 5, 4.

• Delete root node of above Heap tree and Re-arrange Heap tree.

• Write algorithm to sort the numbers in ascending order using heapsort.

• Sort the numbers using heapsort: 18, 13, 12, 22, 15, 24, 10, 16, 19, 14, 30.

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

References
https://www.javatpoint.com/indexing-in-dbms

Prepared by Prof. Anand Gharu, MET's IOE, Nashik

https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms
https://www.javatpoint.com/indexing-in-dbms

THANK YOU!!!
My Blog : https://anandgharu.wordpress.com/

Email : gharu.anand@gmail.com

53

https://anandgharu.wordpress.com/

